用户名: 密码: 验证码:
The “sugar” coarse-grained DNA model
详细信息    查看全文
  • 作者:N. A. Kovaleva ; I. P. Koroleva (Kikot) ; M. A. Mazo…
  • 关键词:Coarse graining ; DNA ; Phase transition
  • 刊名:Journal of Molecular Modeling
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:23
  • 期:2
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Computer Applications in Chemistry; Molecular Medicine; Computer Appl. in Life Sciences; Characterization and Evaluation of Materials; Theoretical and Computational Chemistry;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:0948-5023
  • 卷排序:23
文摘
More than 20 coarse-grained (CG) DNA models have been developed for simulating the behavior of this molecule under various conditions, including those required for nanotechnology. However, none of these models reproduces the DNA polymorphism associated with conformational changes in the ribose rings of the DNA backbone. These changes make an essential contribution to the DNA local deformability and provide the possibility of the transition of the DNA double helix from the B-form to the A-form during interactions with biological molecules. We propose a CG representation of the ribose conformational flexibility. We substantiate the choice of the CG sites (six per nucleotide) needed for the ”sugar” GC DNA model, and obtain the potentials of the CG interactions between the sites by the ”bottom-up” approach using the all-atom AMBER force field. We show that the representation of the ribose flexibility requires one non-harmonic and one three-particle potential, the forms of both the potentials being different from the ones generally used. The model also includes (i) explicit representation of ions (in an implicit solvent) and (ii) sequence dependence. With these features, the sugar CG DNA model reproduces (with the same parameters) both the B- and A- stable forms under corresponding conditions and demonstrates both the A to B and the B to A phase transitions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700