用户名: 密码: 验证码:
Associations between anthropometric characteristics, physical activity, and breast cancer risk in a Canadian cohort
详细信息    查看全文
  • 作者:Chelsea Catsburg (1)
    Victoria A. Kirsh (2) (3)
    Colin L. Soskolne (4) (5)
    Nancy Kreiger (2) (3)
    Erin Bruce (6)
    Thi Ho (2)
    Scott T. Leatherdale (7)
    Thomas E. Rohan (1)
  • 关键词:Physical activity ; Obesity ; Breast cancer ; Epidemiology ; Anthropometric measurements
  • 刊名:Breast Cancer Research and Treatment
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:145
  • 期:2
  • 页码:545-552
  • 全文大小:
  • 参考文献:1. Shields M, Tremblay MS, Laviolette M, Craig CL, Janssen I, Connor Gorber S (2010) Fitness of Canadian adults: results from the 2007-009 Canadian Health Measures Survey. Health Rep 21(1):21-5
    2. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ et al (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377(9765):557-67 CrossRef
    3. Thorp AA, Owen N, Neuhaus M, Dunstan DW (2011) Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996-011. Am J Prev Med 41(2):207-15 CrossRef
    4. De Pergola G, Silvestris F (2013) Obesity as a major risk factor for cancer. J Obes 2013:291546 CrossRef
    5. Han D, Nie J, Bonner MR, McCann SE, Muti P, Trevisan M et al (2006) Lifetime adult weight gain, central adiposity, and the risk of pre- and postmenopausal breast cancer in the Western New York exposures and breast cancer study. Int J Cancer 119(12):2931-937 CrossRef
    6. Cheraghi Z, Poorolajal J, Hashem T, Esmailnasab N, Doosti Irani A (2012) Effect of body mass index on breast cancer during premenopausal and postmenopausal periods: a meta-analysis. PLoS One 7(12):e51446 CrossRef
    7. Rose DP, Vona-Davis L (2010) Interaction between menopausal status and obesity in affecting breast cancer risk. Maturitas 66(1):33-8 CrossRef
    8. Key T, Appleby P, Barnes I, Reeves G, Endogenous H, Breast Cancer Collaborative G (2002) Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 94(8):606-16 CrossRef
    9. Travis RC, Key TJ (2003) Oestrogen exposure and breast cancer risk. Breast Cancer Res 5(5):239-47 CrossRef
    10. Zain MM, Norman RJ (2008) Impact of obesity on female fertility and fertility treatment. Womens Health (Lond Engl) 4(2):183-94 CrossRef
    11. Eliassen AH, Missmer SA, Tworoger SS, Spiegelman D, Barbieri RL, Dowsett M et al (2006) Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. J Natl Cancer Inst 98(19):1406-415 CrossRef
    12. Hoffman-Goetz L, Apter D, Demark-Wahnefried W, Goran MI, McTiernan A, Reichman ME (1998) Possible mechanisms mediating an association between physical activity and breast cancer. Cancer 83(3 Suppl):621-28 CrossRef
    13. Thune I, Brenn T, Lund E, Gaard M (1997) Physical activity and the risk of breast cancer. N Engl J Med 336(18):1269-275 CrossRef
    14. Coyle YM (2008) Physical activity as a negative modulator of estrogen-induced breast cancer. Cancer Causes Control 19(10):1021-029 CrossRef
    15. Friedenreich CM (2010) The role of physical activity in breast cancer etiology. Semin Oncol 37(3):297-02 CrossRef
    16. Cohen SS, Matthews CE, Bradshaw PT, Lipworth L, Buchowski MS, Signorello LB et al (2013) Sedentary behavior, physical activity, and likelihood of breast cancer among Black and White women: a report from the Southern Community Cohort Study. Cancer Prev Res (Phila) 6(6):566-76 CrossRef
    17. Rohan TE, Soskolne CL, Carroll KK, Kreiger N (2007) The Canadian Study of Diet, Lifestyle, and Health: design and characteristics of a new cohort study of cancer risk. Cancer Detect Prev 31(1):12-7 CrossRef
    18. Hall S, Schulze K, Groome P, Mackillop W, Holowaty E (2006) Using cancer registry data for survival studies: the example of the Ontario Cancer Registry. J Clin Epidemiol 59(1):67-6 CrossRef
    19. Statistics Canada (2011). http://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=4101. http://www12.statcan.ca/census-recensement/2011. Accessed 2 April 2014
    20. Barlow WE, Ichikawa L, Rosner D, Izumi S (1999) Analysis of case-cohort designs. J Clin Epidemiol 52(12):1165-172 CrossRef
    21. Cai J, Zeng D (2004) Sample size/power calculation for case-cohort studies. Biometrics 60(4):1015-024 CrossRef
    22. Rockhill B, Willett WC, Hunter DJ, Manson JE, Hankinson SE, Colditz GA (1999) A prospective study of recreational physical activity and breast cancer risk. Arch Intern Med 159(19):2290-296 CrossRef
    23. Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA et al (1994) Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 23(5):991-99 CrossRef
    24. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C et al (2011) 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc 43(8):1575-581 CrossRef
    25. Langholz B, Jiao J (2007) Computational methods for case-cohort studies. Comput Stat Data Anal 51(8):3737-748 CrossRef
    26. World Health Organization (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 894(i–xii):1-53
    27. Rinaldi S, Key TJ, Peeters PH, Lahmann PH, Lukanova A, Dossus L et al (2006) Anthropometric measures, endogenous sex steroids and breast cancer risk in postmenopausal women: a study within the EPIC cohort. Int J Cancer 118(11):2832-839 CrossRef
    28. Nelson LR, Bulun SE (2001) Estrogen production and action. J Am Acad Dermatol 45(3 Suppl):S116–S124 CrossRef
    29. Tchernof A, Despres JP (2000) Sex steroid hormones, sex hormone-binding globulin, and obesity in men and women. Horm Metab Res 32(11-2):526-36 CrossRef
    30. van den Brandt PA, Spiegelman D, Yaun SS, Adami HO, Beeson L, Folsom AR et al (2000) Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol 152(6):514-27 CrossRef
    31. Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E et al (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356(3):227-36 CrossRef
    32. Ballard-Barbash R, Schatzkin A, Taylor PR, Kahle LL (1990) Association of change in body mass with breast cancer. Cancer Res 50(7):2152-155
    33. Vrieling A, Buck K, Kaaks R, Chang-Claude J (2010) Adult weight gain in relation to breast cancer risk by estrogen and progesterone receptor status: a meta-analysis. Breast Cancer Res Treat 123(3):641-49 CrossRef
    34. Feigelson HS, Jonas CR, Teras LR, Thun MJ, Calle EE (2004) Weight gain, body mass index, hormone replacement therapy, and postmenopausal breast cancer in a large prospective study. Cancer Epidemiol Biomarkers Prev 13(2):220-24 CrossRef
    35. Huang Z, Hankinson SE, Colditz GA, Stampfer MJ, Hunter DJ, Manson JE et al (1997) Dual effects of weight and weight gain on breast cancer risk. JAMA 278(17):1407-411 CrossRef
    36. Alsaker MD, Janszky I, Opdahl S, Vatten LJ, Romundstad PR (2013) Weight change in adulthood and risk of postmenopausal breast cancer: the HUNT study of Norway. Br J Cancer 109(5):1310-317 CrossRef
    37. Bernstein L, Henderson BE, Hanisch R, Sullivan-Halley J, Ross RK (1994) Physical exercise and reduced risk of breast cancer in young women. J Natl Cancer Inst 86(18):1403-408 CrossRef
    38. Bernstein L, Ross RK, Lobo RA, Hanisch R, Krailo MD, Henderson BE (1987) The effects of moderate physical activity on menstrual cycle patterns in adolescence: implications for breast cancer prevention. Br J Cancer 55(6):681-85 CrossRef
    39. Harlow SD, Matanoski GM (1991) The association between weight, physical activity, and stress and variation in the length of the menstrual cycle. Am J Epidemiol 133(1):38-9
    40. Campbell KL, McTiernan A (2007) Exercise and biomarkers for cancer prevention studies. J Nutr 137(1 Suppl):161S-69S
    41. Frank L (2006) Exercise and insulin resistance. In: McTiernan A (ed) Cancer prevention and management through exercise and weight control. Taylor & Francis, Boca Raton, p 131
    42. Friedenreich CM, Orenstein MR (2002) Physical activity and cancer prevention: etiologic evidence and biological mechanisms. J Nutr 132(11 Suppl):3456S-464S
    43. Patel AV, Bernstein L (2006) Physical activity and cancer incidence: Breast cancer. In: McTiernan A (ed) Cancer prevention and management through exercise and weight control. Taylor & Francis, Boca Raton, p 49
  • 作者单位:Chelsea Catsburg (1)
    Victoria A. Kirsh (2) (3)
    Colin L. Soskolne (4) (5)
    Nancy Kreiger (2) (3)
    Erin Bruce (6)
    Thi Ho (2)
    Scott T. Leatherdale (7)
    Thomas E. Rohan (1)

    1. Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
    2. Prevention and Cancer Control, Cancer Care Ontario, Toronto, ON, Canada
    3. Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
    4. University of Alberta, Edmonton, AB, Canada
    5. Faculty of Health, University of Canberra, Bruce, ACT, Australia
    6. Faculty of Medicine, University of Calgary, Calgary, AB, Canada
    7. School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada
  • ISSN:1573-7217
文摘
Obesity, physical inactivity, and sedentary behavior, concomitants of the modern environment, are potentially modifiable breast cancer risk factors. This study investigated the association of anthropometric measurements, physical activity and sedentary behavior, with the risk of incident, invasive breast cancer using a prospective cohort of women enrolled in the Canadian Study of Diet, Lifestyle and Health. Using a case-cohort design, an age-stratified subcohort of 3,320 women was created from 39,532 female participants who returned completed self-administered lifestyle and dietary questionnaires at baseline. A total of 1,097 incident breast cancer cases were identified from the entire cohort via linkage to the Canadian Cancer Registry. Cox regression models, modified to account for the case-cohort design, were used to estimate hazard ratios (HR) and 95?% confidence intervals (CI) for the association between anthropometric characteristics, physical activity, and the risk of breast cancer. Weight gain as an adult was positively associated with risk of post-menopausal breast cancer, with a 6?% increase in risk for every 5?kg gained since age 20 (HR 1.06; 95?% CI 1.01-.11). Women who exercised more than 30.9 metabolic equivalent task (MET) hours per week had a 21?% decreased risk of breast cancer compared to women who exercised less than 3 MET hours per week (HR ?0.79; 95?% CI 0.62-.00), most evident in pre-menopausal women (HR ?0.62; 95?% CI 0.43-.90). As obesity reaches epidemic proportions and sedentary lifestyles have become more prevalent in modern populations, programs targeting adult weight gain and promoting physical activity may be beneficial with respect to reducing breast cancer morbidity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700