用户名: 密码: 验证码:
Pneumococcal wall teichoic acid is required for the pathogenesis of Streptococcus pneumoniae in murine models
详细信息    查看全文
  • 作者:Hongmei Xu (1)
    Libin Wang (1)
    Jian Huang (1)
    Yanqing Zhang (1)
    Feng Ma (1)
    Jianmin Wang (1)
    Wenchun Xu (1)
    Xuemei Zhang (1)
    Yibing Yin (1)
    Kaifeng Wu (1) (2)

    1. Key Laboratory of Diagnostic Medicine designated by the Ministry of Education
    ; College of Laboratory Medicine ; Chongqing Medical University ; Chongqing ; P. R. China
    2. Department of Laboratory Medicine
    ; The Third Affiliated Hospital of Zunyi Medical College ; Zunyi ; P. R. China
  • 关键词:Streptococcus pneumoniae ; wall teichoic acid ; colonization ; pathogenesis
  • 刊名:Journal of Microbiology
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:53
  • 期:2
  • 页码:147-154
  • 全文大小:646 KB
  • 参考文献:1. Bogaert, D., de Groot, R., and Hermans, P.W.M. 2004. / Streptococcus pneumoniae colonisation: The key to pneumococcal disease. / Lancet Infect. Dis. 4, 144鈥?54. CrossRef
    2. Bui, N.K., Eberhardt, A., Vollmer, D., Kern, T., Bougault, C., Tomasz, A., Simorre, J.P., and Vollmer, W. 2012. Isolation and analysis of cell wall components from / Streptococcus pneumoniae. / Anal. Biochem. 421, 657鈥?66. CrossRef
    3. Cundell, D.R., Gerard, N.P., Gerard, C., Idanpaan-Heikkila, I., and Tuomanen, E.I. 1995. / Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. / Nature 377, 435鈥?38. CrossRef
    4. Draing, C., Pfitzenmaier, M., Zummo, S., Mancuso, G., Geyer, A., Hartung, T., and von Aulock, S. 2006. Comparison of lipoteichoic acid from different serotypes of / Streptococcus pneumoniae. / J. Biol. Chem. 281, 33849鈥?3859. CrossRef
    5. Gehre, F., Spisek, R., Kharat, A.S., Matthews, P., Kukreja, A., Anthony, R.M., Dhodapkar, M.V., Vollmer, W., and Tomasz, A. 2009. Role of teichoic acid choline moieties in the virulence of / Streptococcus pneumoniae. / Infect. Immun. 77, 2824鈥?831. CrossRef
    6. Gisch, N., Kohler, T., Ulmer, A.J., Muthing, J., Pribyl, T., Fischer, K., Lindner, B., Hammerschmidt, S., and Zahringer, U. 2013. Structural reevaluation of / Streptococcus pneumoniae lipoteichoic acid and new insights into its immunostimulatory potency. / J. Biol. Chem. 288, 15654鈥?5667. CrossRef
    7. Grundling, A. and Schneewind, O. 2007. Synthesis of glycerol phosphate lipoteichoic acid in / Staphylococcus aureus. / Proc. Natl. Acad. Sci. USA 104, 8478鈥?483. CrossRef
    8. Hammerschmidt, S., Wolff, S., Hocke, A., Rosseau, S., Muller, E., and Rohde, M. 2005. Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. / Infect. Immun. 73, 4653鈥?667. CrossRef
    9. Hsu, H.E., Shutt, K.A., Moore, M.R., Beall, B.W., Bennett, N.M., Craig, A.S., Farley, M.M., Jorgensen, J.H., Lexau, C.A., Petit, S., et al. 2009. Effect of pneumococcal conjugate vaccine on pneumococcal meningitis. / N Engl. J. Med. 360, 144鈥?56. CrossRef
    10. Hummell, D.S., Swift, A.J., Tomasz, A., and Winkelstein, J.A. 1985. Activation of the alternative complement pathway by pneumococcal lipoteichoic acid. / Infect. Immun. 47, 384鈥?87.
    11. Kadioglu, A., Weiser, J.N., Paton, J.C., and Andrew, P.W. 2008. The role of / Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. / Nat. Rev. Microbiol. 6, 288鈥?01. CrossRef
    12. Kawai, Y., Marles-Wright, J., Cleverley, R. M., Emmins, R., Ishikawa, S., Kuwano, M., Heinz, N., Bui, N.K., Hoyland, C.N., Ogasawara, N., et al. 2011. A widespread family of bacterial cell wall assembly proteins. / EMBO J. 30, 4931鈥?941. CrossRef
    13. Kim, J.O. and Weiser, J.N. 1997. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of / Streptococcus pneumoniae. / J. Infect. Dis. 177, 368鈥?77. CrossRef
    14. Liu, Y., Wang, H., Chen, M., Sun, Z., Zhao, R., Zhang, L., Zhang, H., Wang, L., Chu, Y., and Ni, Y. 2008. Serotype distribution and antimicrobial resistance patterns of / Streptococcus pneumoniae isolated from children in china younger than 5 years. / Diagn. Microbiol. Infect. Dis. 61, 256鈥?63. CrossRef
    15. Montagnani, F., Fanetti, A., Stolzuoli, L., Croci, L., Arena, F., Zanchi, A., and Cellesi, C. 2008. Pneumococcal disease in a paediatric population in a hospital of central italy: A clinical and microbiological case series from 1992 to 2006. / J. Infect. 56, 179鈥?84. CrossRef
    16. O鈥橞rien, K. L., Wolfson, L.J., Watt, J.P., Henkle, E., Deloria-Knoll, M., McCall, N., Lee, E., Mulholland, K., Levine, O.S., and Cherian, T. 2009. Burden of disease caused by / Streptococcus pneumoniae in children younger than 5 years: Global estimates. / Lancet 374, 893鈥?02. CrossRef
    17. Sabharwal, V., Ram, S., Figueira, M., Park, I.H., and Pelton, S.I. 2009. Role of complement in host defense against pneumococcal otitis media. / Infect. Immun. 77, 1121鈥?127. CrossRef
    18. Shainheit, M.G., Mule, M., and Camilli, A. 2014. The core promoter of the capsule operon of / Streptococcus pneumoniae is necessary for colonization and invasive disease. / Infect. Immun. 82, 694鈥?05. CrossRef
    19. Skovsted, I.C., Kerrn, M.B., Sonne-Hansen, J., Sauer, L.E., Nielsen, A.K., Konradsen, H.B., Petersen, B.O., Nyberg, N.T., and Duus, J.O. 2007. Purification and structure characterization of the active component in the pneumococcal 22f polysaccharide capsule used for adsorption in pneumococcal enzyme-linked immunosorbent assays. / Vaccine 25, 6490鈥?500. CrossRef
    20. Smith, B.L. and Hostetter, M.K. 2000. C3 as substrate for adhesion of / Streptococcus pneumoniae. / J. Infect. Dis. 182, 497鈥?08. CrossRef
    21. Standish, A.J. and Weiser, J.N. 2009. Human neutrophils kill / Streptococcus pneumoniae via serine proteases. / J. Immunol. 183, 2602鈥?609. CrossRef
    22. Tomasz, A. 1968. Biological consequences of the replacement of choline by ethanolamine in the cell wall of pneumococcus: Chain formation, loss of transformability, and loss of autolysis. / Proc. Natl. Acad. Sci. USA 59, 86鈥?3. CrossRef
    23. Weidenmaier, C., Kokai-Kun, J.F., Kristian, S.A., Chanturiya, T., Kalbacher, H., Gross, M., Nicholson, G., Neumeister, B., Mond, J.J., and Peschel, A. 2004. Role of teichoic acids in / Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. / Nat. Med. 10, 243鈥?45. CrossRef
    24. Weidenmaier, C. and Peschel, A. 2008. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. / Nat. Rev. Microbiol. 6, 276鈥?87. CrossRef
    25. Weiser, J.N., Austrian, R., Sreenivasan, P.K., and Masure, H.R. 1994. Phase variation in pneumococcal opacity: Relationship between colonial morphology and nasopharyngeal colonization. / Infect. Immun. 62, 2582鈥?589.
    26. Weiser, J.N., Markiewicz, Z., Tuomanen, E.I., and Wani, J.H. 1996. Relationship between phase variation in colony morphology, intrastrain variation in cell wall phsiology, and nasopharyngeal colozition by / Streptococcus pneumoniae. / Infect. Immun. 64, 2240鈥?246.
    27. Wu, K., Huang, J., Zhang, Y., Xu, W., Xu, H., Wang, L., Cao, J., Zhang, X., and Yin, Y. 2014. A novel protein, RafX, is important for common cell wall polysaccharide biosynthesis in / Streptococcus pneumoniae: Implications for bacterial virulence. / J. Bacteriol. 196, 3324鈥?334. CrossRef
  • 刊物主题:Microbiology;
  • 出版者:Springer Netherlands
  • ISSN:1976-3794
文摘
Pneumococcal asymptomatic colonization of the respiratory tracts is a major risk for invasive pneumococcal disease. We have previously shown that pneumococcal wall teichoic acid (WTA) was involved in pneumococcal infection of sepsis and adherence to epithelial and endothelial cells. In this study, we investigated the contribution of pneumococcal WTA to bacterial colonization and dissemination in murine models. The result showed that nasopharynx colonizing D39 bacterial cells have a distinct phenotype showing an increased exposure of teichoic acids relative to medium-grown bacteria. The WTA-deficient mutants were impaired in their colonization to the nasopharynx and lungs, and led to a mild inflammation in the lungs at 36 h post-inoculation. Pretreatment of the murine nares with WTA reduced the ability of wild type D39 bacteria to colonize the nasopharynx. In addition, the WTA-deficient strain was impaired in its ability to invade the blood and brain following intranasal administration. WTA-deficient D39 strain was reduced in C3 deposition but was more susceptible to the killing by the neutrophils as compared with its parent strain. Our results also demonstrated that the WTA enhanced pneumococcal colonization and dissemination independently of the host strains. These results indicate that WTA plays an important role in pneumococcal pathogenesis, both in colonization and dissemination processes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700