用户名: 密码: 验证码:
Utility of mosquito surveillance data for spatial prioritization of vector control against dengue viruses in three Brazilian cities
详细信息    查看全文
  • 作者:Kim M Pepin (1) (2) (3)
    Clint B Leach (3)
    Cecilia Marques-Toledo (4)
    Karla H Laass (5)
    Kelly S Paixao (5)
    Angela D Luis (1) (3) (8)
    David TS Hayman (10) (3) (6)
    Nels G Johnson (3)
    Michael G Buhnerkempe (3) (9)
    Scott Carver (3) (7)
    Daniel A Grear (3)
    Kimberly Tsao (3)
    Alvaro E Eiras (5)
    Colleen T Webb (1) (3)

    1. Fogarty International Center
    ; National Institute of Health ; Bethesda ; Maryland ; 20892 ; USA
    2. United States Department of Agriculture
    ; National Wildlife Research Center ; Wildlife Services ; Animal and Plant Health Inspection Service ; 4101 Laporte Ave ; Fort Collins ; CO ; 80521 ; USA
    3. Department of Biology
    ; Colorado State University ; Fort Collins ; Colorado ; 80523 ; USA
    4. Ecovec S.A
    ; Belo Horizonte ; Minas Gerais ; Brazil
    5. Departamento de Parasitologia
    ; Universidade Federal de Minas Gerais ; Av. Pres. Antonio Carlos ; 6627 ; Pampulha ; Belo Horizonte ; MG ; Brazil
    8. Current address
    ; Department of Wildlife Biology ; College of Forestry and Conservation ; University of Montana ; Missoula ; Montana ; 59812 ; USA
    10. Current address
    ; EpiLab ; Infectious Disease research Centre (IDReC) ; Hopkirk Research Institute ; Institute of Veterinary ; Animal and Biomedical Sciences ; Massey University ; Palmerston North ; Manawatu ; New Zealand
    6. Department of Biology
    ; University of Florida ; Gainesville ; Florida ; 32611 ; USA
    9. Current address
    ; Department of Ecology and Evolutionary Biology ; University of California 鈥?Los Angeles ; Los Angeles ; California ; 90095 ; USA
    7. School of Biological Sciences
    ; University of Tasmania ; Hobart ; 7000 ; Australia
  • 关键词:Vector control ; Dengue ; Surveillance ; Vector density ; Mosquito ; human interactions ; Gravity model ; INLA
  • 刊名:Parasites & Vectors
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:8
  • 期:1
  • 全文大小:2,507 KB
  • 参考文献:1. Morrison AC, Zielinski-Gutierrez E, Scott TW, Rosenberg R. Defining challenges and proposing solutions for control of the virus vector / Aedes aegypti. PLoS Med. 2008;5(3):e68. CrossRef
    2. Huy R, Buchy P, Conan A, Ngan C, Ong S, Ali R, et al. National dengue surveillance in Cambodia 1980鈥?008: epidemiological and virological trends and the impact of vector control. B World Health Organ. 2010;88(9):650鈥?. CrossRef
    3. Honorio NA, Nogueira RMR, Codeco CT, Carvalho MS, Cruz OG, Magalhaes M, et al. Spatial evaluation and modeling of dengue seroprevalence and vector density in Rio de Janeiro, Brazil. Plos Neglect Trop Dis. 2009;3(11):e545. CrossRef
    4. Lin CH, Wen TH. Using Geographically Weighted Regression (GWR) to explore spatial varying relationships of immature mosquitoes and human densities with the incidence of dengue. Int J Environ Res Public Health. 2011;8(7):2798鈥?15. CrossRef
    5. Scott TW, Morrison AC. Vector dynamics and transmission of dengue virus: implications for dengue surveillance and prevention strategies vector dynamics and dengue prevention. In: Rothman AL, editor. Dengue virus. 3382010th ed. 2010. p. 115鈥?8. CrossRef
    6. Thammapalo S, Nagao Y, Sakamoto W, Saengtharatip S, Tsujitani M, Nakamura Y, et al. Relationship between transmission intensity and incidence of dengue hemorrhagic fever in Thailand. Plos Neglect Trop Dis. 2008;2(7):e263. CrossRef
    7. Mammen MP, Pimgate C, Koenraadt CJ, Rothman AL, Aldstadt J, Nisalak A, et al. Spatial and temporal clustering of dengue virus transmission in Thai villages. PLoS Med. 2008;5(11):e205. CrossRef
    8. Yoon IK, Getis A, Aldstadt J, Rothman AL, Tannitisupawong D, Koenraadt CJ, et al. Fine scale spatiotemporal clustering of dengue virus transmission in children and / Aedes aegypti in rural Thai villages. PLoS Negl Trop Dis. 2012;6(7):e1730. CrossRef
    9. Stoddard ST, Forshey BM, Morrison AC, Paz-Soldan VA, Vazquez-Prokopec GM, Astete H, et al. House-to-house human movement drives dengue virus transmission. Proc Natl Acad Sci U S A. 2013;110(3):994鈥?. CrossRef
    10. Stoddard ST, Morrison AC, Vazquez-Prokopec GM, Paz Soldan V, Kochel TJ, Kitron U, et al. The role of human movement in the transmission of vector-borne pathogens. PLoS Negl Trop Dis. 2009;3(7):e481. CrossRef
    11. Vazquez-Prokopec GM, Kitron U, Montgomery B, Horne P, Ritchie SA. Quantifying the spatial dimension of dengue virus epidemic spread within a tropical urban environment. PLoS Negl Trop Dis. 2010;4(12):e920. CrossRef
    12. Danon L, House T, Keeling MJ. The role of routine versus random movements on the spread of disease in Great Britain. Epidemics. 2009;1(4):250鈥?. CrossRef
    13. Vazquez-Prokopec GM, Bisanzio D, Stoddard ST, Paz-Soldan V, Morrison AC, Elder JP, et al. Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment. PLoS One. 2013;8(4):e58802. CrossRef
    14. De Melo DPO, Scherrer LR, Eiras AE. Dengue fever occurrence and vector detection by larval survey, ovitrap and MosquiTRAP: a space-time clusters analysis. PLoS One. 2012;7(7):e42125. CrossRef
    15. Eiras AE, Resende MC. Preliminary evaluation of the 鈥淒engue-MI鈥?technology for / Aedes aegypti monitoring and control. Cad Saude Publica. 2009;25:S45鈥?8. CrossRef
    16. Pepin KM, Marques-Toledo C, Scherer L, Morais MM, Ellis B, Eiras AE. Cost-effectiveness of novel system of mosquito surveillance and control, Brazil. Emerg Infect Dis. 2013;19(4):542鈥?0. CrossRef
    17. de Resende MC, de Azara TMF, Costa IO, Heringer LC, de Andrade MR, Acebal JL, et al. Field optimisation of MosquiTRAP sampling for monitoring Aedes aegypti Linnaeus (Diptera: Culicidae). Mem I Oswaldo Cruz. 2012;107(3):294鈥?02. CrossRef
    18. Honorio NA, Codeco CT, Alvis FC, Magalhaes M, Lourenco-De-Oliveira R. Temporal distribution of / Aedes aegypti in different districts of Rio De Janeiro, Brazil, measured by two types of traps. J Med Entomol. 2009;46(5):1001鈥?4. CrossRef
    19. Lourenco-de-Oliveira R, Lima JBP, Peres R, Alves FD, Eiras AE, Codeco CT. Comparison of different uses of adult traps and ovitraps for assessing dengue vector infestation in endemic areas. J Am Mosquito Contr. 2008;24(3):387鈥?2. CrossRef
    20. Maciel-de-Freitas R, Peres RC, Alves F, Brandolini MB. Mosquito traps designed to capture / Aedes aegypti (Diptera: Culicidae) females: preliminary comparison of Adultrap, MosquiTRAP and backpack aspirator efficiency in a dengue-endemic area of Brazil. Mem I Oswaldo Cruz. 2008;103(6):602鈥?. CrossRef
    21. Favaro EA, Mondini A, Dibo MR, Barbosa AAC, Eiras AE, Neto FC. Assessment of entomological indicators of Aedes aegypti (L.) from adult and egg collections in Sao Paulo, Brazil. J Vector Ecol. 2008;33(1):8鈥?6. CrossRef
    22. Rue H, Martino S, Chopkin N. Approximate bayesian inference for latent gaussian models using integrated nested laplace approximations. J Roy Stat Soc B. 2009;71(2):319鈥?2. CrossRef
    23. Xia Y, Bjornstad ON, Grenfell BT. Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics. Am Nat. 2004;164(2):267鈥?1. CrossRef
    24. Ferrari MJ, Grais RF, Bharti N, Conlan AJ, Bjornstad ON, Wolfson LJ, et al. The dynamics of measles in sub-Saharan Africa. Nature. 2008;451(7179):679鈥?4. CrossRef
    25. Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A. Bayesian measures of model complexity and fit. J Roy Stat Soc B. 2002;64:583鈥?16. CrossRef
    26. Held L, Schrodle B, Rue H. Posterior and cross-validatory predictive checks: a comparison of MCMC and INLA. In: Kneib T, Tutz G, editors. Statistical modelling and regression structures. Berlin, Germany: Springer,verlag; 2010.
    27. Chan M, Johansson MA. The incubation periods of dengue viruses. PLoS One. 2012;7(11):e50972. CrossRef
    28. Sharma KD, Mahabir RS, Curtin KM, Sutherland JM, Agard JB, Chadee DD. Exploratory space-time analysis of dengue incidence in Trinidad: a retrospective study using travel hubs as dispersal points, 1998鈥?004. Parasite Vector. 2014;7:341. CrossRef
    29. David MR, Lourenco-de-Oliveira R, Maciel de Freitas R. Container productivity, daily survival rates and dispersal of / Aedes aegypti mosquitoes in a high income dengue epidemic neighborhood of Rio de Janeiro: presumed influence of differential urban structure on mosquito biology. Mem I Oswaldo Cruz. 2009;104(6):927鈥?2. CrossRef
    30. Gon莽alves CM, Melo FF, Bezerra JMT, Chaves BA, Silva BM, Silva LD, et al. Distinct variation in vector competence among nine field populations of Aedes aegypti from a Brazilian dengue-endemic risk city. Parasite Vector. 2014;7:320. CrossRef
    31. Luo L, Liang HY, Hu YS, Liu WJ, Wang YL, Jing QL, et al. Epidemiological, virological, and entomological characteristics of dengue from 1978 to 2009 in Guangzhou, China. J Vector Ecol. 2012;37(1):230鈥?0. CrossRef
    32. Liebman KA, Stoddard ST, Morrison AC, Rocha C, Minnick S, Sihuincha M, et al. Spatial dimensions of dengue virus transmission across interepidemic and epidemic periods in Iquitos, Peru (1999鈥?003). Plos Neglect Trop Dis. 2012;6(2):e1472. CrossRef
    33. Kuno G. Review of the factors modulating dengue transmission. Epidemiol Rev. 1995;17(2):321鈥?5.
    34. Ministerio da saude SdVeS. Diretrizes Nacionais para a Preven莽茫o e Controle de Epidemias de Dengue. Edited by 茅pidemiol贸gica DdV. http://www.dengue.pr.gov.br.
    35. Adams B, Kapan DD. Man bites mosquito: understanding the contribution of human movement to vector-borne disease dynamics. PLoS One. 2009;4(8):e6763. CrossRef
    36. Rotela C, Fouque F, Lamfri M, Sabatier P, Introini V, Zaidenberg M, et al. Space-time analysis of the dengue spreading dynamics in the 2004 Tartagal outbreak, Northern Argentina. Acta Trop. 2007;103(1):1鈥?3. CrossRef
    37. Cosner C, Beier JC, Cantrell RS, Impoinvil D, Kapitanski L, Potts MD, et al. The effects of human movement on the persistence of vector-borne diseases. J Theor Biol. 2009;258(4):550鈥?0. CrossRef
  • 刊物主题:Parasitology; Infectious Diseases; Tropical Medicine; Entomology;
  • 出版者:BioMed Central
  • ISSN:1756-3305
文摘
Background Vector control remains the primary defense against dengue fever. Its success relies on the assumption that vector density is related to disease transmission. Two operational issues include the amount by which mosquito density should be reduced to minimize transmission and the spatio-temporal allotment of resources needed to reduce mosquito density in a cost-effective manner. Recently, a novel technology, MI-Dengue, was implemented city-wide in several Brazilian cities to provide real-time mosquito surveillance data for spatial prioritization of vector control resources. We sought to understand the role of city-wide mosquito density data in predicting disease incidence in order to provide guidance for prioritization of vector control work. Methods We used hierarchical Bayesian regression modeling to examine the role of city-wide vector surveillance data in predicting human cases of dengue fever in space and time. We used four years of weekly surveillance data from Vitoria city, Brazil, to identify the best model structure. We tested effects of vector density, lagged case data and spatial connectivity. We investigated the generality of the best model using an additional year of data from Vitoria and two years of data from other Brazilian cities: Governador Valadares and Sete Lagoas. Results We found that city-wide, neighborhood-level averages of household vector density were a poor predictor of dengue-fever cases in the absence of accounting for interactions with human cases. Effects of city-wide spatial patterns were stronger than within-neighborhood or nearest-neighborhood effects. Readily available proxies of spatial relationships between human cases, such as economic status, population density or between-neighborhood roadway distance, did not explain spatial patterns in cases better than unweighted global effects. Conclusions For spatial prioritization of vector controls, city-wide spatial effects should be given more weight than within-neighborhood or nearest-neighborhood connections, in order to minimize city-wide cases of dengue fever. More research is needed to determine which data could best inform city-wide connectivity. Once these data become available, MI-dengue may be even more effective if vector control is spatially prioritized by considering city-wide connectivity between cases together with information on the location of mosquito density and infected mosquitos.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700