用户名: 密码: 验证码:
Bayesian empirical likelihood estimation of quantile structural equation models
详细信息    查看全文
文摘
Structural equation model (SEM) is a multivariate analysis tool that has been widely applied to many fields such as biomedical and social sciences. In the traditional SEM, it is often assumed that random errors and explanatory latent variables follow the normal distribution, and the effect of explanatory latent variables on outcomes can be formulated by a mean regression-type structural equation. But this SEM may be inappropriate in some cases where random errors or latent variables are highly nonnormal. The authors develop a new SEM, called as quantile SEM (QSEM), by allowing for a quantile regression-type structural equation and without distribution assumption of random errors and latent variables. A Bayesian empirical likelihood (BEL) method is developed to simultaneously estimate parameters and latent variables based on the estimating equation method. A hybrid algorithm combining the Gibbs sampler and Metropolis-Hastings algorithm is presented to sample observations required for statistical inference. Latent variables are imputed by the estimated density function and the linear interpolation method. A simulation study and an example are presented to investigate the performance of the proposed methodologies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700