用户名: 密码: 验证码:
Analysis and evaluation of the top- \(k\) most influential location selection
详细信息    查看全文
  • 作者:Jian Chen (1)
    Jin Huang (2)
    Zeyi Wen (2)
    Zhen He (3)
    Kerry Taylor (4)
    Rui Zhang (2)

    1. School of Software Engineering
    ; South China University of Technology ; Guangzhou ; China
    2. Department of Computing and Information Systems
    ; University of Melbourne ; Melbourne ; Australia
    3. Department of Computer Science
    ; La Trobe University ; Bundoora ; Australia
    4. The Commonwealth Scientific and Industrial Research Organisation (CSIRO)
    ; Canberra ; Australia
  • 关键词:Reverse nearest neighbor ; R ; tree ; Efficiency ; Location selection
  • 刊名:Knowledge and Information Systems
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:43
  • 期:1
  • 页码:181-217
  • 全文大小:1,574 KB
  • 参考文献:1. Achtert E, Kriegel HP, Krger P, Renz M, Zfle A (2009) Reverse k-nearest neighbor search in dynamic and general metric databases. In: Proceedings of EDBT
    2. ANNLibrary (2011) http://www.cs.umd.edu/~mount/ann/
    3. Aronovich, L, Spiegler, I (2009) Bulk construction of dynamic clustered metric trees. Knowl Inf Syst 22: pp. 211-244 CrossRef
    4. Brinkhoff T, Kriegel HP, Seeger B (1993) Efficient processing of spatial joins using r-trees. In: Proceedings of SIGMOD
    5. Cabello S, D铆az-B谩帽ez JM, Langerman S, Seara C, Ventura I (2006) Reverse facility location problems. In: Proceedings of CCCG
    6. Cheema, MA, Lin, X, Wang, W, Zhang, W, Pei, J (2010) Probabilistic reverse nearest neighbor queries on uncertain data. IEEE TKDE 22: pp. 550-564
    7. Cheema MA, Lin X, Zhang W, Zhang Y (2011) Influence zone : efficiently processing reverse k nearest neighbors queries. In: Proceedings of ICDE
    8. Cheema MA, Zhang W, Lin X, Zhang Y (2012) Efficiently processing snapshot and continuous reverse k nearest neighbors queries. VLDB J
    9. Chen, H, Liu, J, Furuse, K, Yu, JX, Ohbo, N (2010) Indexing expensive functions for efficient multi-dimensional similarity search. Knowl Inf Syst 27: pp. 165-192 CrossRef
    10. CloudMade (2013) http://downloads.cloudmade.com/
    11. Du, Y, Zhang, D, Xia, T (2005) The optimal-location query. Adv Sp Temp Databases 3633: pp. 163-180 CrossRef
    12. Gao, Y, Zheng, B, Chen, G, Li, Q (2009) Optimal-location-selection query processing in spatial databases. IEEE TKDE 68: pp. 1162-1177
    13. Ghaemi P, Shahabi K, Wilson JP, Banaei-Kashani F (2010) Optimal network location queries. In: Proceedings of GIS
    14. Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proceedings of SIGMOD, pp 47鈥?7
    15. Huang J, Wen Z, Qi J, Zhang R, Chen J, He Z (2011) Top-k most influential location selection. In: Proceedings of CIKM
    16. Korn F, Muthukrishnan S (2000) Influence sets based on reverse nearest neighbor queries. In: Proceedings of SIGMOD
    17. Mouratidis K, Papadias D, Papadimitriou S (2005) Medoid queries in large spatial databases. In: Proceedings of SSTD, pp 55鈥?2
    18. OpenStreetMap (2013) http://www.openstreetmap.org/
    19. Qi J, Zhang R, Kulik L, Lin D, Xue Y (2012) The min-dist location selection query. In: Proceedings of ICDE
    20. Roussopoulos N, Kelley S, Vincent F (1995) Nearest neighbor queries. In: Proceedings of SIGMOD, pp 71鈥?9
    21. Shang S, Yuan B, Deng K, Xie K, Zhou X (2011) Finding the most accessible locations-reverse path nearest neighbor query in road networks categories and subject descriptors. In: Proceedings of GIS
    22. SouFang (2013) http://www.soufun.com
    23. Stanoi I, Riedewald M, Agrawal D, Abbadi AE (2001) Discovery of influence sets in frequently updated database. In: Proceedings of VLDB
    24. Sun Y, Huang J, Chen Y, Zhang R, Du X (2012) Location selection for utility maximization with capacity constraints. In: Proceedings of CIKM
    25. Tao Y, Lian X (2004) Reverse kNN search in arbitrary dimensionality. In: Proceedings of VLDB
    26. Trulia (2013) http://trulia.com
    27. Vaidya PM (1989) AnO(n logn) algorithm for the all-nearest-neighbors problem. Discret Comput Geom 4(1):101鈥?15
    28. Wong, RCW, 脰zsu, MT, Fu, AWC, Yu, PS, Liu, L, Liu, Y (2011) Maximizing bichromatic reverse nearest neighbor for L p -norm in two- and three-dimensional spaces. VLDB J 20: pp. 893-919 CrossRef
    29. Wong RCW, Ozsu MT, Yu PS, Fu AWC, Liu L (2009) Efficient method for maximizing bichromatic reverse nearest neighbor. In: Proceedings of VLDB
    30. Wu W, Yang F, Chan CY, Tan KL (2008) FINCH: evaluating reverse k-nearest-neighbor queries on location data. In: Proceedings of VLDB
    31. Xia T, Zhang D, Kanoulas E, Du Y (2005) On computing top-t most influential spatial sites. In: Proceedings of VLDB
    32. Yan D, Wong RCW, Ng W (2011) Efficient methods for finding influential locations with adaptive grids. In: Proceedings of CIKM, pp 1475鈥?484
    33. Yang C, Lin KI (2001) An index structure for efficient reverse nearest neighbor queries. In: Proceedings of ICDE, pp 485鈥?92
    34. Zhang D, Du Y, Xia T, Tao Y (2006) Progressive computation of the min-dist optimal location query. In: Proceedings of VLDB
    35. Zhang J, Mamoulis N, Papadias D, Tao Y (2004) All-nearest-neighbors queries in spatial databases. In: Proceedings of SSDM, pp 297鈥?06
    36. Zheng K, Huang Z, Zhou A, Zhou X (2011) Discovering the most influential sites over uncertain data: a rank based approach. IEEE TKDE
  • 刊物类别:Computer Science
  • 刊物主题:Information Systems and Communication Service
    Business Information Systems
  • 出版者:Springer London
  • ISSN:0219-3116
文摘
In this paper, we propose a new type of queries to retrieve the top-k most influential locations from a candidate set \(C\) given sets of customers \(M\) and existing facilities \(F\) . The influence models the popularity of a facility. Such queries have wide applications in decision support systems. A naive solution sequentially scans (SS) all data sets, which is expensive, and hence, we investigate two branch-and-bound algorithms for the query, namely Estimate Expanding Pruning (EEP) and Bounding Influence Pruning (BIP). Both algorithms follow the best first traverse. On determining the traversal order, while EEP leverages distance metrics between nodes, BIP relies on half plane pruning which avoids the repetitive estimations in EEP. As our experiments shown, BIP is much faster than SS which outperforms EEP, while the worst-case complexity of EEP and BIP is worse than that of SS. To improve the efficiency, we further propose a Nearest Facility Circle Join (NFCJ) algorithm. NFCJ builds an influence R-tree on the influence relationship between customers and existing facilities and joins the candidate R-tree with the influence R-tree to obtain the results. We compare all algorithms and conclude that NFCJ is the best solution, which outperforms SS, EEP, and BIP by orders of magnitude.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700