用户名: 密码: 验证码:
Low Speed Granular–Granular Impact Crater Opening Mechanism in 2D Experiments
详细信息    查看全文
  • 作者:Roberto Bartali ; Yuri Nahmad-Molinari…
  • 关键词:Granular impacts ; Rubble ; pile asteroids ; Impact craters
  • 刊名:Earth, Moon, and Planets
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:116
  • 期:2
  • 页码:115-138
  • 全文大小:2,751 KB
  • 参考文献:Y. Amarouchene, J.F. Boudet, H. Kellay, Dynamic sand dunes. Phys. Rev. Lett. V 86, 4286 (2001). doi:10.​1103/​PhysRevLett.​86.​4286 CrossRef ADS
    N. Artemieva, E. Pierazzo, Projectile material in Meteor crater. In European Planetary Science Congress Abstracts, Vol. 5, EPSC2010-182 (2010)
    E. Asphaug, S.J. Ostro, R.S. Hudson, D.J. Scheeres, W. Benz, Disruption of kilometer-sized asteroids by energetic collisions. Lett. Nat. 393, 437–440 (1998). doi:10.​1038/​30911 CrossRef
    E. Asphaug, E.V. Ryan, M.T. Zuber, in Asteroid Interiors, ed. by W.F. Bottke. Asteroid III (University of Arizona press, ISBN: 0-8165-2281-2, 2002)
    J. Baer, S.R. Chesley, R.D. Matson, Astrometric masses of 26 asteroids and observations on asteroid porosity. Astron. J. 141, 143 (2011). doi:10.​1088/​0004-6256/​141/​5/​143 CrossRef ADS
    G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, ISBN 9780521663960 (2000)
    P.B. Bland, N.A. Artemieva, D.B.J. Bussey, G.S. Collins, K.H. Joy, Survival of asteroidal impactor material on the moon. In 70th Annual Meteoritical Society Meeting (2007), abstract 5251 (2007)
    P.A. Bland, N.A. Artemieva, G.S. Collins, W.F. Bottke, D.B.J. Bussey, K.H. Joy, Asteroids on the moon: projectile survival during low velocity impact. Lunar Planet. Sci. XXXIX, abstract 2045 (2008)
    D.T Britt, D. Yeomans, K. Housen, G. Consolmagno, Asteroids III, ed. by W.F. Bottke Jr., A. Cellino, P. Paolicchi, R.P. Binzel. Asteroid density, porosity, and structure (University of Arizona Press, Tucson, ISBN 0816 52281 2, 2002), pp. 485–500
    E. Buhl, M. Poelchau, G. Dresen, T. Kenkmann, Scaling of sub-surface deformation in hypervelocity impact experiments on porous sandstone. Tectonophysics 634(2014), 171–181 (2014). doi:10.​1016/​j.​tecto.​2014.​07.​030 CrossRef ADS
    B. Carry, Density of asteroids. Planet. Space Sci. 73(1), 98–118 (2012). doi:10.​1016/​j.​pss.​2012.​03.​009 CrossRef ADS
    G.S. Collins, H.J. Melosh, J.V. Morgan, M.R. Warner, Hydrocode simulations of Chicxulub crater collapse and peak-ring formation. Icarus 157, 24–33 (2002). doi:10.​1006/​icar.​2002.​6822 CrossRef ADS
    G.S. Collins, H.J. Melosh, K. Wünnemann, Improvements to the ɛ-α porous compaction model for simulating impacts into high-porosity solar system objects. Int. J. Impact Eng. 38(6), 434–439 (2011). doi:10.​1016/​j.​ijimpeng.​2010.​10.​013 CrossRef
    P. Descamps, F. Marchis, J. Pollock, J. Berthier, F. Vachier, M. Birlan, M. Kaasalainen, A.W. Harris, M. Wong, W. Romanishin, E.M. Cooper, K.A. Kettner, P. Wiggins, A. Kryszczynska, M. Polinska, J.F. Colliac, A. Devyatkin, I. Verestchagina, D. Gorshanov, New determination of the size and bulk density of the binary asteroid 22 Kalliope from observations of mutual eclipses. Icarus 192–2, 578–600 (2008). doi:10.​1016/​j.​icarus.​2008.​03.​014 CrossRef ADS
    K. Dohi, M. Arakawa, C. Okamoto, S. Hasegawa, M. Yasui, The effect of a thin weak layer covering a basalt block on the impact cratering process. Icarus 218(2012), 751–759 (2012). doi:10.​1016/​j.​icarus.​2012.​01.​018 CrossRef ADS
    A. Dufresne, M.H. Poelchau, T. Kenkmann, A. Deutsch, T. Hoerth, F. Schäfer, A. Thoma, Crater morphology in sandstone targets: the MEMIN impact parameter study. Meteorit. Planet. Sci. 48(1), 50–70 (2013). doi:10.​1111/​maps.​12024 CrossRef ADS
    A. Fujiwara, J. Kawaguchi, D.K. Yeomans, M. Abe, T. Mukai, T. Okada, J. Saito, H. Yano, M. Yoshikawa, D.J. Scheeres, O. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, N. Hirata, H. Ikeda, T. Kominato, H. Miyamoto, A.M. Nakamura, R. Nakamura, S. Sasaki, K. Uesugi, The rubble-pile asteroid itokawa as observed by Hayabusa. Science 312(5778), 1330–1334 (2006). doi:10.​1126/​science.​1125841 CrossRef ADS
    T.J. Goldin, K. Wünnemann, H.J. Melosh, G.S. Collins, Hydrocode modeling of Sierra Madera impact structure. Meteorit. Planet. Sci. 41(Nr 12), 1947–1958 (2005). 2006 ADS
    K.R. Housen, K.A. Holsapple, Scale effects in strength-dominated collisions of rocky asteroids. Icarus 142, 21–33 (1999). doi:10.​1006/​icar.​1999.​6206 CrossRef ADS
    K.R. Housen, K.A. Holsapple, M.E. Voss, Compaction as the origin of the unusual craters on the asteroid Mathilde. Nature 402, 155–157 (1999). doi:10.​1038/​45985 CrossRef ADS
    K.R. Housen, K.A. Holsapple, Impact cratering on porous asteroids. Icarus 163(1), 102–119 (2003). doi:10.​1016/​S0019-1035(03)00024-1 CrossRef ADS
    B.A. Ivanov, N.A. Artemieva, Numerical modeling of the formation of large impact craters. GSA Spec. Pap. 356, 619–630 (2002). doi:10.​1130/​0-8137-2356-6.​619
    H.A. Janssen, Versuche Uber Getreiedruch in silozellen. Z. Ver. Dtsch. Ing. 39(1045), 8 (1895)
    K.H. Joy, M.E. Zolensky, K. Nagashima, G.R. Huss, D.K. Ross, D.S. McKay, D.A. Kring, Direct detection of projectile relics from the end of the lunar basin-forming epoch. Science 336, 1426–1429 (2012). doi:10.​1126/​science.​1219633 CrossRef ADS
    W.T. Kelvin, Hydrokinetic solutions and observations. Philos. Mag. 42, 362–377 (1871)
    M. Kiuchi, A.M. Nakamura, Relationship between regolith particle size and porosity on small bodies. Icarus 239(2014), 291–293 (2014). doi:10.​1016/​j.​icarus.​2014.​05.​029 CrossRef ADS
    D.A. Kring, Guidebook to the Geology of Barringer Meteorite Crater, Arizona (a.k.a. Meteor Crater). Lunar and Planetary Institute, LPI Contribution No. 1355 (2007)
    L. Le Corre, V. Reddy, J.A. Sanchez, T. Dunn, E.A. Cloutis, M.R.M. Izawa, P. Mann, A. Nathues, Exploring exogenic sources for the olivine on Asteroid (4) Vesta. Icarus (2015). doi:10.​1016/​j.​icarus.​2015.​01.​018
    D.F. Lupishko, On the bulk density of the M-type asteroid 16 Psyche. Sol. Syst. Res. 40(3), 214–218 (2006). doi:10.​1134/​S003809460603005​1 CrossRef ADS
    C. Magri, G.J. Consolmagno, S.J. Ostrch, L.A.M. Benner, B.R. Beeney, Radar constraints on asteroid regolith properties using 433 Eros as ground truth. Meteorit. Planet. Sci. 36(12), 1697–1709 (2001). doi:10.​1111/​j.​1945-5100.​2001.​tb01857.​x CrossRef ADS
    J.L. Margot, M.E. Brown, A low-density M-type asteroid in the main belt. Science 300(5627), 1939–1942 (2003). doi:10.​1126/​science.​1085844 CrossRef ADS
    A. Morbidelli, W.F. Bottke, D. Nesvorny, H.F. Levison, Asteroids were born big. Icarus 204(2009), 558–573 (2009). doi:10.​1016/​j.​icarus.​2009.​07.​011 CrossRef ADS
    A.M. Nakamura, Cratering of asteroids and small bodies. Adv. Space Res. 29(8), 1221–1230 (2002). doi:10.​1016/​S0273-1177(02)00140-0 CrossRef ADS
    M.L. Nelson, D.T. Britt, L.A. Lebofsky, Review of Asteroid Compositions, ed. by M.L. Guerrieri. Resources of near-earth space (University of Arizona press, ISBN-13: 978-0816514045, 1994), pp. 493–522
    V.R. Oberbeck, W.L. Quaide, Estimated thickness of a fragmental surface layer of Oceanus Procellarum. J. Geophys. Res. 72, 4697–4704 (1967)CrossRef ADS
    D.P. O’Brien, R. Greenberg, J.E. Richardson, Craters on asteroids: reconciling diverse impact records with a common impacting population. Icarus 183(2006), 79–92 (2006). doi:10.​1016/​j.​icarus.​2006.​02.​008 CrossRef ADS
    F. Pacheco-Vázquez, J.C. Ruiz-Suárez, Impact craters in granular media: grains against grains. Phys. Rev. Lett. 107, 218001 (2011). doi:10.​1103/​PhysRevLett.​107.​218001 CrossRef ADS
    P. Paolicchi, A. Kryszczyńskab, Spin vectors of asteroids: updated statistical properties and open problems. Planet. Space Sci. 73(1), 70–74 (2012). doi:10.​1016/​j.​pss.​2012.​02.​017 CrossRef ADS
    T. Poppe, J. Blum, Experiments on pre-planetary grain growth. Adv. Space Res. 20(8), 1595–1604 (1997). doi:10.​1016/​S0273-1177(97)00817-X CrossRef ADS
    P. Pravec, A.W. Harris, Fast and slow rotation of asteroids. Icarus 148(1), 12–20 (2000). doi:10.​1006/​icar.​2000.​6482 CrossRef ADS
    V. Reddy, L. Le Corre, D.P. O’Brien, A. Nathues, E.A. Cloutis, D.D. Durda, W.F. Bottke, M.U. Bhatt, D. Nesvorny, D. Buczkowski, J.E.C. Scully, E.M. Palmer, H. Sierks, P.J. Mann, K.J. Becker, A.W. Beck, D. Mittlefehldtj, J-Y.k Li, R. Gaskell, C.T. Russell, M.J. Gaffey, H.Y. McSween, T.B. McCord, J.-P.m Combe, D. Blewett, Delivery of dark material to Vesta via carbonaceous chondritic impacts. Icarus 221(2012), 544–559 (2012). doi:10.​1016/​j.​icarus.​2012.​08.​011 CrossRef ADS
    O. Reynolds, On the dilatancy of media composed of rigid particles in contact, with experimental illustrations. Philos. Mag. Ser. 5 20, 469–481 (1885)CrossRef
    O. Reynolds, Experiments showing dilatancy, a property of granular material, possibly connected with gravitation. Proc. R. Inst. G. B. 51, 217–227 (1886)
    J.C. Ruiz-Suárez, Penetration of projectiles into granular targets. Rep. Prog. Phys. 76, 066601 (2013). doi:10.​1088/​0034-4885/​76/​6/​066601 CrossRef ADS
    P. Sánchez, D.J. Scheeres, The strength of regolith and rubble pile asteroids. Meteorit. Planet. Sci. 49(5), 788–811 (2014). doi:10.​1111/​maps.​12293 CrossRef ADS
    D.J. Scheeres, C.M. Hartzell, P. Sánchez, M. Swift, Scaling forces to asteroid surfaces: the role of cohesion. Icarus 210(2010), 968–984 (2010). doi:10.​1016/​j.​icarus.​2010.​07.​009 CrossRef ADS
    S.R. Schwartz, P. Michel, D.C. Richardson, H. Yano, Low-speed impact simulations into regolith in support of asteroid sampling mechanism design I: comparison with 1-g experiments. Planet. Space Sci. 103(2014), 174–183 (2014). doi:10.​1016/​j.​pss.​2014.​07.​013 CrossRef ADS
    E.M. Shoemaker, Penetration mechanics of high velocity meteorites, illustrated by Meteor crater, Arizona. In International Geological Congress, 21st, Copenhagen (1960), pp. 418–434
    R. Sullivan, R. Greeley, R. Pappalardo, E. Asphaug, J.M. Moore, D. Morrison, M.J.S. Belton, M. Carr, C.R. Chapman, P. Geissler, R. Greenberg, J. Granahan, J.W. Head III, R. Kirk, A. McEwen, P. Lee, P.C. Thomas, J. Veverka, Geology of 243 Ida. Icarus 120(1), 119–139 (1996). doi:10.​1006/​icar.​1996.​0041 CrossRef ADS
    P.C. Thomas, Large craters on small objects: occurrence, morphology, and effects. Icarus 142, 89–96 (1999). doi:10.​1006/​icar.​1999.​6211 CrossRef ADS
    J. Veverka, P. Thomas, A. Harch, B. Clark, J.F. Bell III, B. Carcich, J. Joseph, NEAR encounter with asteroid 253 Mathilde: overview. Icarus 140, 3–16 (1999). doi:10.​1006/​icar.​1999.​6120 CrossRef ADS
    J. Veverka, M. Robinson, P. Thomas, S. Murchie, J.F. Bell III, Chapman, N.C. Izenberg, A. Harch, M. Bell, B. Carcich, A. Cheng, B. Clark, D. Domingue, D. Dunham, R. Farquhar, M.J. Gaffey, E. Hawkins, J. Joseph, R. Kirk, H. Li, P. Lucey, M. Malin, P. Martin, L. McFadden, W.J. Merline, J.K. Miller, W.M. Owen Jr, C. Peterson, L. Prockter, J. Warren, D. Wellnitz, B.G. Williams, D.K. Yeomans, NEAR at Eros: imaging and spectral results. Science 289(5487), 2088–2097 (2000). doi:10.​1126/​science.​289.​5487.​2088 CrossRef ADS
    H. von Helmholtz, Über discontinuierliche Flüssigkeits-Bewegungen. Mon. Rep. R. Prussian Acad.Philos. Berlin 23, 215–228 (1868)
    K. Wada, H. Senshu, T. Matsui, Numerical simulation of impact cratering on granular material. Icarus 180(2006), 528–545 (2006). doi:10.​1016/​j.​icarus.​2005.​10.​002 CrossRef ADS
    S.L. Wilkison, M.S. Robinson, P.C. Thomas, J. Veverka, T.J. McCoy, S.L. Murchie, L.M. Prockter, D.K. Yeomans, An estimate of Eros’s porosity and implications for internal structure. Icarus 155, 94–103 (2002). doi:10.​1006/​icar.​2001.​6751 CrossRef ADS
    S. Yamamoto, K. Wada, N. Okabe, T. Matsui, Transient crater growth in granular targets: an experimental study of low velocity impacts into glass sphere targets. Icarus 183(2006), 215–224 (2006). doi:10.​1016/​j.​icarus.​2006.​02.​002 CrossRef ADS
    Z. Yue, B.C. Johnson, D.A. Minton, H.J. Melosh, K. Di, W. Hu, Y. Liu, Projectile remnants in central peaks of lunar impact craters. Nat. Geosci. 6, 435–437 (2013). doi:10.​1038/​ngeo1828 CrossRef ADS
  • 作者单位:Roberto Bartali (1)
    Yuri Nahmad-Molinari (2)
    Gustavo M. Rodríguez-Liñán (2)

    1. Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
    2. Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Astronomy
    Planetology
    Extraterrestrial Physics and Space Sciences
    Astrophysics
  • 出版者:Springer Netherlands
  • ISSN:1573-0794
文摘
Quasi-2D, low-velocity experiments of colliding granular projectiles against granular targets were performed by means of a 7 m-long Hele-Shaw cell. The processes involved in the crater-opening mechanism of low-velocity granular-against-granular collisions are described. We show that the crater is opened mainly by a compaction process of the target. The projectile is fragmented and its lower section suffers a severe compaction; this projectile remnant forms a central dome or peak inside the crater. When the target reaches its maximum degree of compaction, the excess of momentum generates fast avalanches sliding on the slopes of the confined material, and exerts pressure on the crater walls, increasing its diameter. We propose that low-velocity collisions between granular aggregates are a possible mechanism that allows the growth of small planetary objects or the aggregation after catastrophic or high-energy collisions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700