用户名: 密码: 验证码:
n-Octyloxyallene homopolymerization and random copolymerization with styrene using catalyst system composed of lanthanide Schiff-base complexes and Al(i-Bu)3
详细信息    查看全文
  • 作者:JunQing Jiao (14852)
    WeiWei Zhu (14852)
    XuFeng Ni (14852)
    ZhiQuan Shen (14852)
  • 关键词:n ; octyloxyallene ; styrene ; lanthanide ; Schiff ; base ; coordination polymerization
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:56
  • 期:7
  • 页码:970-976
  • 全文大小:688KB
  • 参考文献:1. Aggour YA, Tomita I, Endo T. Synthesis and radical polymerization of end-allenoxy polyoxyethylene macromonomer. / React Funct Polym, 1995, 28: 81-7 CrossRef
    2. Aggour YA, Tomita I, Endo T. Radical copolymerizability of end-allenoxy polyoxyethylenes with styrene. / React Funct Polym, 1996, 29: 7-0 CrossRef
    3. Endo T, Tomita I. Novel polymerization methods for allene derivatives. / Prog Polym Sci, 1997, 22: 565-00 CrossRef
    4. Tomita I, Kondo Y, Takagi K, Endo T. A novel living coordination polymerization of methoxyallene by π-allylnickel catalysyt. / Macromolecules, 1994, 27: 4413-414 CrossRef
    5. Tomita I, Abe T, Takagi K, Endo T. Block copolymerization of alkoxyallenes by the living coordination system with a π-allylnickel catalysyt. / J Polym Sci Pol Chem, 1995, 33: 2487-492 CrossRef
    6. Takagi K, Tomita I, Nakamura Y, Endo T. Living coordination polymerization of alkoxyallenes by π-allylnickel catalyst. 2. Effect of anionic ligands on polymerization behavior and polymer structure. / Macromolecules, 1998, 31: 2779-783 CrossRef
    7. Kino T, Taguchi M, Tazawa A, Tomita I. Living coordination polymerization of allene derivatives in protic solvents: Remarkable acceleration of polymerization and increase of 1,2-polymerization selectivity. / Macromolecules, 2006, 39: 7474-478 CrossRef
    8. Taguchi M, Tomita I, Endo T. Living coordination polymerization of allene (1,2-propadiene) by π-allylnickel catalyst and selective hydrosilylation reaction of polymers having polyallene units. / Macromol Chem Phys, 2000, 201: 2322-327 CrossRef
    9. Taguchi M, Tomita I, Yoshida Y, Endo T. Block copolymerization of allene derivatives with 1,3-butadiene by living coordination polymerization with π-allylnickel catalyst. / J Polym Sci Pol Chem, 1999, 37: 3916-921 CrossRef
    10. Takenaka Y, Osakada K. Rh complex catalyzed alternating copolymerization of alkylallene or aryloxoallene with carbon monoxide: Influence of monomer structures on the reaction rate. / Macromol Chem Phys, 2001, 202: 3571-578 CrossRef
    11. Osakada K, Takenaka Y, Choi JC, Yamaguchi I, Yamamoto T. Synthesis of linear and branched polyketones from the Rh complex catalyzed living alternating copolymerization of (4-alkylphenyl)allene with CO. / J Polym Sci Pol Chem, 2000, 38: 1505-511 CrossRef
    12. Choi JC, Yamaguchi I, Osakada K, Yamamoto T. Alternating copolymerization of arylallenes with carbon monoxide catalyzed by a π-allylrhodium complex. Synthesis of new polyketones with regulated structure and molecular weight. / Macromolecules, 1998, 31: 8731-736 CrossRef
    13. Kacker S, Sen A. Palladium(II)-catalyzed alternating copolymerization of allene with carbon monoxide and the synthesis of terpolymer with / alt-allene carbon monoxide and / alt-ethene carbon monoxide blocks. Synthetic and mechanistic aspects. / J Am Chem Soc, 1997, 119: 10028-0033 CrossRef
    14. Ni XF, Zhu WW, Shen ZQ. Synthesis and characterization of a novel graft copolymer with poly( / n-octylallene- / co-styrene) backbone and poly(?-caprolactone) side chain. / Polymer, 2010, 51: 2548-555 CrossRef
    15. Zhu WW, Ni XF, Shen ZQ. Polymerization of / n-octylallene catalyzed by titanium schiff-base complex. / Chem J Chinese U, 2008, 29: 2554-557
    16. Shao F, Ni XF, Shen ZQ. Preparation of amphiphilic graft copolymer with polyisoprene backbone by combination of anionic polymerization and “click-reaction. / Chin Chem Lett, 2012, 23: 347-50 CrossRef
    17. Wang GW, Fan XS, Huang JL. Investigation of thiol-ene addition reaction on poly(isoprene) under UV irradiation: Synthesis of graft copolymers with “V-shaped side chains. / J Polym Sci Pol Chem, 2010, 48: 3797-806 CrossRef
    18. Zhang QS, Ni XF, Zhang YF, Shen ZQ. Homopolymerization and copolymerization of isoprene and styrene with a neodymium catalyst using an alkylmagnesium cocatalyst. / Macromol Rapid Commun, 2001, 22: 1493-496 CrossRef
    19. Guo F, Nishiura M, Koshino H, Hou ZM. Scandium-catalyzed cyclocopolymerization of 1,5-hexadiene with styrene and ethylene: Efficient synthesis of cyclopolyolefins containing syndiotactic styrene-styrene sequences and methylene-1,3-cyclopentane units. / Macromolecules, 2011, 44: 6335-344 CrossRef
    20. Lu YB, Sun WL, Shen ZQ. Copolymerization of / N-phenylmaleimide with styrene by rare earth coordination catalyst. / Eur Polym J, 2002, 38: 1275-279 CrossRef
    21. Zhang QS, Li WS, Shen ZQ. Copolymerization of butadiene and styrene with neodymium naphthenate based catalyst. / Eur Polym J, 2002, 38: 869-73 CrossRef
    22. Jiao JQ, Yang XF, Ni XF. Polymerization of alkyl isocyanate catalyzed by lanthanum schiff base complexes. / Acta Polym Sin, 2011, 5: 475-80 CrossRef
    23. Ni XF, Xu XY, Shen ZQ. Copolymerization of phenylisocyanate and / ?-caprolactone with rare earth chloride systems. / J Appl Polym Sci, 2007, 103: 2135-140 CrossRef
    24. Liang ZH, Ni XF, Li X, Shen ZQ. Synthesis and characterization of benzoxazine-functionalized amine bridged bis(phenolate) lanthanide complexes and their application in the ring-opening polymerization of cyclic esters. / Dalton Trans, 2012, 41: 2812-819 CrossRef
    25. Zhao W, Cui DM, Liu XL, Chen XS. Facile synthesis of hydroxyl-ended, highly stereoregular, star-shaped poly(lactide) from immortal ROP of rac-lactide and kinetics study. / Macromolecules, 2010, 43: 6678-684 CrossRef
    26. Yu CP, Zhang LF, Shen ZQ. Ring opening polymerization of ?-caprolactone using rare earth tris(4- / tert-butylphenolate)s as a single component initiator. / Eur Polym J, 2003, 39: 2035-039 CrossRef
    27. Ni XF, Zhu WW, Shen ZQ. Polymerization of / n-octylallene with rare earth catalyst composed of Ln(P(204))3/Al(i-Bu)3. / Chin J Chem, 2010, 28: 2055-058 CrossRef
    28. Gupta KC, Sutar AK. Catalytic activities of Schiff base transition metal complexes. / Coord Chem Rev, 2008, 252: 1420-450 CrossRef
    29. Makio H, Fujita T. Development and application of FI catalysts for olefin polymerization: unique catalysis and distinctive polymer formation. / Acc Chem Res, 2009, 42: 1532-544 CrossRef
    30. Drozdzak R, Allaert B, Ledoux N, Dragutan I, Dragutan V, Verpoort F. Ruthenium complexes bearing bidentate Schiff base ligands as efficient catalysts for organic and polymer syntheses. / Coord Chem Rev, 2005, 249: 3055-074 CrossRef
    31. Makio H, Kashiwa N, Fujita T. FI catalysts: A new family of high performance catalysts for olefin polymerization. / Adv Synth Catal, 2002, 344: 477-93 CrossRef
    32. Ni XF, Liang ZH, Ling J, Li X, Shen ZQ. Controlled ring-opening polymerization of / ?-caprolactone initiated by / in situ formed yttrium trisalicylaldimine complexes, and their study by density functional theory. / Polym Int, 2011, 60: 1745-752 CrossRef
    33. Li BY, Wang YR, Yao YM, Zhang Y, Shen Q. Synthesis, structure and reactivity of samarium complexes supported by Schiff-base ligands. / J Organomet Chem, 2009, 694: 2409-414 CrossRef
    34. Ni XF, Zhu WW, Shen ZQ. Controlled ring-opening polymerization of / ?-caprolactone catalyzed by a rare earth Schiff-base complex. / Chin J Catal, 2010, 31: 965-71 CrossRef
    35. Hoff S, Brandsma L, Arens JF. Preparation, metallation and alkylation of allenyl ethers. / Recl Trav Chim Pays-Bas, 1968, 87: 916-24 CrossRef
    36. Kelen T, Tudos F. Analysis of the linear methods for determining copolymerization reactivity ratios. 1. A new improved linear graphic method. / J Macromol Chem, 1975, 9: 1- CrossRef
  • 作者单位:JunQing Jiao (14852)
    WeiWei Zhu (14852)
    XuFeng Ni (14852)
    ZhiQuan Shen (14852)

    14852. MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
文摘
The catalyst system composed of lanthanide Schiff-base complexes with [3,5-tBu2-2-(O)C6H2CH=NC6H5]3Ln(THF)(Ln(Salen)3, Ln = Sc, Y, La, Nd, Sm, Gd, Yb) and triisobutyl aluminum shows high activity for n-octyloxyallene (A) homopolymerization with narrow molecular weight distribution (MWD). The influences of reaction conditions on polymerization behavior are investigated, and poly(n-octyloxyallene) has a weight average molecular weight (M w) of 20.6 × 103 with MWD of 1.39 and 100% yield is obtained under the optimum conditions: [Al]/[Y] = 50 mol/mol, [A]/[Y] = 100 mol/mol, with polymerization at 80 °C for 16 h in bulk. The kinetic studies of n-octyloxyallene homopolymerization indicate that the polymerization rate is first-order with respect to the monomer concentration and shows some controlled polymerization characteristics. Random copolymer of n-octyloxyallene with styrene is obtained by using the same binary catalyst system; the reactivity ratios of the comonomer determined by Kelen-Tüd?s method are r A = 1.20 and r St = 0.35, respectively, the ratio of each segment and M w of the resulting copolymer could be controlled by varying the feed ratio of each monomer. Determined by differential scanning calorimetry, the copolymers obtained show only one glass transition temperature, which increases gradually with the increase of styrene content in the copolymer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700