用户名: 密码: 验证码:
Multiscale Modeling Approach to Dynamic-Mechanical Behavior of Elastomer Nanocomposites
详细信息    查看全文
  • 关键词:Dynamic moduli ; Multiscale theoretical approach ; Polymer localization ; Rigid fillers ; Rubber composites
  • 刊名:Advances in Polymer Science
  • 出版年:2017
  • 出版时间:2017
  • 年:2017
  • 卷:275
  • 期:1
  • 页码:157-186
  • 全文大小:962 KB
  • 参考文献:1.Saphiannikova M, Toshchevikov V, Gazuz I, Petry F, Westermann S, Heinrich G (2014) Macromolecules 47:4813–4823CrossRef
    2.Ivaneiko I, Toshchevikov V, Saphiannikova M, Stöckelhuber K, Petry F, Westermann S, Heinrich G (2016) Polymer 82:356–365CrossRef
    3.Vilgis TA, Heinrich G, Klüppel M (2009) Reinforcement of polymer nanocomposites: theory, experiments and applications. Cambridge University Press, CambridgeCrossRef
    4.Grellmann W, Heinrich G, Kaliske M, Klüppel M, Schneider K, Vilgis T (2013) Fracture mechanics and statistical mechanics of reinforced elastomeric blends. Springer, Heidelberg, New York, Dordrecht, and LondonCrossRef
    5.Heinrich G (1997) Rubber Chem Technol 70:1–14CrossRef
    6.Klüppel M, Heinrich G (2000) Rubber Chem Technol 73:578–606CrossRef
    7.Heinrich G, Vilgis TA (2015) Poly Lett 9:291–299CrossRef
    8.Heinrich G, Dumler BD (1998) Rubber Chem Technol 71:53–61CrossRef
    9.Heinrich G, Vilgis TA (2008) Kautschuk Gummi Kunststoffe 61:368–376
    10.Westermann S, Petry F, Boes R, Thielen G (2004) Tire Technology International: Annual review. p 68
    11.Westermann S, Petry F, Boes R, Thielen G (2004) Kautschuk Gummi Kunststoffe 57:645–650
    12.Stöckelhuber KW, Svistkov AS, Pelevin AG, Heinrich G (2011) Macromolecules 44:4366–4381CrossRef
    13.Mooney M (1959) J Polym Sci 34:599–626CrossRef
    14.Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York
    15.Morse DC (1998) Macromolecules 31:7044–7067CrossRef
    16.Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford
    17.Shore JE, Zwanzig RJ (1975) Chem Phys 63:5445–5458
    18.Mansfield MJ (1983) Polym Sci Polym Phys Ed 21:773–786CrossRef
    19.Gotlib YY, Toshchevikov VP (2001) Polym Sci A 43:525–534
    20.Gotlib YY, Toshchevikov VP (2001) Polym Sci A 43:1074–1083
    21.Gurtovenko AA, Gotlib YY (2000) Macromolecules 33:6578–6587CrossRef
    22.Gurtovenko AA, Blumen A (2005) Adv Polym Sci 182:171–282CrossRef
    23.Toshchevikov VP, Blumen A, Gotlib YY (2007) Macromol Theory Simul 16:359–377CrossRef
    24.Toshchevikov VP, Gotlib YY (2009) Macromolecules 42:3417–3429CrossRef
    25.Edwards SF, Takano H, Terentjev EMJ (2000) Chem Phys 113:5531–5538
    26.Curro JG, Pincus P (1983) Macromolecules 16:559–562CrossRef
    27.Curro JG, Pearson DS, Helfand E (1985) Macromolecules 18:1157–1162CrossRef
    28.Heinrich G, Straube E, Helmis G (1988) Adv Polym Sci 85:33–87CrossRef
    29.Edwards SF, Vilgis TA (1988) Rep Prog Phys 51:243–297CrossRef
    30.Kaliske M, Heinrich G (1999) Rubber Chem Technol 72:602–632CrossRef
    31.Migliorin IG, Rostiashvili VG, Vilgis TA (2003) Eur Phys J B 33:61–73CrossRef
    32.Vilgis TA (2005) Polymer 46:4223–4229CrossRef
    33.Klüppel M (2003) Adv Polym Sci 164:1–86CrossRef
    34.Leblanc JL (2010) Filled polymers: science and industrial applications. CRC, Boca Raton
    35.Rooj S, Das A, Stöckelhuber KW, Wang D-Y, Galiatsatos V, Heinrich G (2011) Soft Matter 9:3798–3808CrossRef
    36.Doi M, Edwards SF (1988) The theory of polymer dynamics. Oxford University Press, Oxford
    37.Klüppel M (2009) J Phys Condens Matter 21:035104CrossRef
    38.Otegui J, Schwartz G, Cerveny S, Colmenero J, Loichen J, Westermann S (2013) Macromolecules 46:2407–2416CrossRef
    39.Kummali M, Miccio L, Schwartz G, Alegria A, Colmenero J, Otegui J, Petzold A, Westermann S (2013) Polymer 54:4980–4986CrossRef
    40.Dealy JM, Larson RG (2006) Structure and rheology of molten polymers. Hansa, CincinnatiCrossRef
    41.Williams G, Watts DC (1970) Trans Faraday Soc 66:80–85CrossRef
    42.Toshchevikov VP, Heinrich G, Gotlib YY (2010) Macromol Theory Simul 19:195–209CrossRef
    43.Sommer J-U, Schulz M, Trautenberg HLJ (1993) Chem Phys 98:7515–7520
    44.Lang M, Göritz D, Kreitmeier S (2003) Macromolecules 36:4646–4658CrossRef
    45.Chasse W, Lang M, Sommer J-U, Saalwächter K (2012) Macromolecules 45:899–912CrossRef
    46.Marzocca AJ, Steren CA, Raimondo RB, Cerveny S (2004) Polym Int 53:646–655CrossRef
    47.Chatenay D, Cocco S, Monasson R, Thieffry D, Dalibard J (eds) (2005) Multiple aspects of DNA and RNA: from biophysics to bioinformatics. Lecture notes of the Les Houches Summer School 2004, session LXXXII. Elsevier, Amsterdam
    48.Westermann S, Kreitschmann M, Pyckhout-Hintzen W, Richter D, Straube E, Farago B, Goerigk G (1999) Macromolecules 32:5793–5802CrossRef
    49.Domurath J, Saphiannikova M, Ausias G, Heinrich G (2012) J Non-Newtonian Fluid Mech 171–172:8–16CrossRef
    50.Domurath J, Saphiannikova M, Férec J, Ausias G, Heinrich G (2015) J Non-Newtonian Fluid Mech 221:95–102CrossRef
    51.Chen HS, Acrivos A (1978) Int J Solids Struct 14:349–364CrossRef
    52.Gold O (1936) Beiträge zur Hydrodynamik der zähen Flssigkeiten. Dissertation, Wien University
    53.Guth E, Gold O (1938) Phys Rev 53:322–324
    54.Guth E (1945) J Appl Phys 16:20–25CrossRef
    55.Huber G, Vilgis TA (1999) KGK, Kautschuk Gummi Kunststoffe 52:102–107
    56.Simhambhatla M, Leonov A (1995) Rheol Acta 34:329–338CrossRef
    57.Sarvestani AS, Jabbari E (2007) Macromol Theory Simul 16:378–385CrossRef
    58.Li Y, Kröger M, Liu W (2012) Phys Rev Lett 109:118001CrossRef
    59.Glomann T, Schneider G, Allgaier J, Radulescu A, Lohstroh W, Farago B, Richter D (2013) Phys Rev Lett 110:178001CrossRef
    60.Kalathi J, Kumar S, Rubinstein M, Grest G (2015) Soft Matter 11:4123–4132CrossRef
    61.Sobhanie M, Isayev A (1999) J Non-Newtonian Fluid Mech 85:189–212CrossRef
    62.Costa F, Saphiannikova M, Wagenknecht U, Heinrich G (2008) Layered double hydroxide based polymer nanocomposites. Adv. Polym. Sci. 210:101–168
    63.Odegard G, Clancy T, Gates T (2005) Polymer 46:553–562CrossRef
    64.Richter S, Saphiannikova M, Jehnichen D, Bierdel M, Heinrich G (2009) Express Polym Lett 3:753–768CrossRef
    65.Richter S, Saphiannikova M, Stöckelhuber K, Heinrich G (2010) Macromol Symp 291–292:193–201CrossRef
    66.Richter S, Kreyenschulte H, Saphiannikova M, Götze T, Heinrich G (2011) Macromol Symp 306–307:141–149CrossRef
    67.Toshchevikov V, Gotlib Y (2006) Polym Sci Ser A 48:649–663CrossRef
    68.Toshchevikov V, Gotlib Y (2013) Polym Sci Ser A 55:556–569CrossRef
    69.Heinrich G, Vilgis T (1993) Macromolecules 26:1109–1119CrossRef
    70.Heinrich G, Vilgis T (1993) Kautschuk Gummi Kunstoffe 46:283–289
    71.Schneider G, Nusser K, Willner L, Falus P, Richter D (2011) Macromolecules 44:5857–5860CrossRef
  • 作者单位:Ievgeniia Ivaneiko (22)
    Vladimir Toshchevikov (22)
    Stephan Westermann (23)
    Marina Saphiannikova (22)

    22. Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Strasse 6, 01069, Dresden, Germany
    23. Goodyear Innovation Center Luxembourg, Avenue Gordon Smith, 7750, Colmar-Berg, Luxembourg
  • 丛书名:Designing of Elastomer Nanocomposites: From Theory to Applications
  • ISBN:978-3-319-47696-4
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-5030
  • 卷排序:275
文摘
Rubber composites based on an elastomeric matrix filled with rigid fillers such as carbon black or silica remain important materials for technical applications and everyday life. Targeted improvement of the mechanical properties of these materials requires a deep understanding of the molecular mobility over broad time and temperature scales. We focus here on recent studies of the dynamic properties of rubber composites with the aid of a physically motivated multiscale theoretical approach. Rubber compounds, based on a solution-polymerized styrene butadiene rubber filled with precipitated silica, have been investigated. The construction of master curves for the storage and loss moduli over more than 15 decades of frequencies is presented. The master curves over the whole frequency range are analyzed with the aid of a new multiscale approach, which includes contributions from the relaxation processes described in rigorous theoretical studies for different scales of motion. It takes into account the long-scale motions of dangling chain ends, Rouse-like dynamics and bending motions of semiflexible chain fragments in the intermediate frequency range, and the specific nonpolymeric relaxation at very high frequencies. The modification of molecular mobility of polymer chains on the surfaces of filler particles and the contribution of the percolation network built by the filler are discussed. The proposed theoretical approach allows fitting of the dynamic moduli of filled and unfilled rubbers in the linear viscoelastic regime with a limited set of parameters (relaxation times, scaling exponents, molar mass of the Kuhn segment, etc.) having reasonable values. The slowing down of the relaxation processes in the vicinity of the filler particles is demonstrated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700