用户名: 密码: 验证码:
ZnO-Coated TiO2 Nanotube Arrays for a Photoelectrode in Dye-Sensitized Solar Cells
详细信息    查看全文
文摘
In dye-sensitized solar cells, highly ordered TiO2 nanotube arrays as a photoelectrode have higher charge collection efficiencies than a nanoparticle-based structure due to their faster charge percolation and slower recombination of electrons. Highly ordered TiO2 nanotube arrays were grown by anodic oxidation of 0.5-mm-thick titanium foil. To increase the conversion efficiency of dye-sensitized solar cells with TiO2 nanotube arrays, the surface of the TiO2 nanotube arrays was modified by zinc oxide thin films. The ZnO thin film was formed by atomic layer deposition. The thin film was conformal on the inner and outer walls of TiO2 nanotube arrays. ZnO thin film improved the short circuit current (J sc) and open circuit voltage (V oc) due to increasing specific surface area from particulates of ZnO thin film and increasing the surface charge induced from the isoelectric point. The power conversion efficiency of dye-sensitized solar cells with ZnO thin film on 4.5-μm-thick TiO2 nanotube arrays was 1.43%. Microstructure and phase were observed by scanning electron microscopy, x-ray diffractometry, and transmission electron microscopy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700