用户名: 密码: 验证码:
Investigation of robust flexible conformal THz perfect metamaterial absorber
详细信息    查看全文
  • 作者:Ju-Hyung Kim ; Mohammad P. Hokmabadi ; Soner Balci ; Elmer Rivera…
  • 刊名:Applied Physics A: Materials Science & Processing
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:122
  • 期:4
  • 全文大小:1,356 KB
  • 参考文献:1.K.F. Ross, R.E. Gordon, Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance. J. Microsc. 128(1), 7–21 (1982)CrossRef
    2.C.S. Joseph, R. Patel, V.A. Neel, R.H. Giles, A.N. Yaroslavsky, Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions. J. Biophotonics 10(1002), 1–10 (2012)
    3.D. Grischkowsky, S. Keiding, M. Van Exter, Ch. Fattinger, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 7(10), 2006–2015 (1990)ADS CrossRef
    4.L. Duvillaret, F. Garet, J.-L. Coutaz, A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2(3), 739–746 (1996)CrossRef
    5.W.R. Tribe, D.A. Newnham, P.F. Taday, M.C. Kemp, Hidden object detection: security applications of terahertz technology. Proc. SPIE 5354, 168–176 (2004)ADS CrossRef
    6.T.G. Phillips, J. Keene, Submillimeter astronomy. Proc. IEEE 80, 1662–1678 (1992)ADS CrossRef
    7.J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)ADS CrossRef
    8.N. Liu, H. Giessen, Coupling effects in optical metamaterials. Angew. Chem. Int. Ed. 49, 9838–9852 (2010)CrossRef
    9.J. Wang, S. Qu, Z. Xu, J. Zhang, Y. Yang, H. Ma, C. Gu, A candidate three-dimensional GHz left-handed metamaterial composed of coplanar magnetic and electric resonators. Photonics Nanostruct. Fundam. Appl. 6, 183 (2008)ADS CrossRef
    10.V. Crnojevic-Bengin, V. Radonic, B. Jokanovic, Fractal geometries of complementary split-ring resonators. IEEE Trans. Microw. Theory Tech. 56(10), 2312–2321 (2008)ADS CrossRef
    11.F. Martín, F. Falcone, J. Bonache, R. Marqués, M. Sorolla, Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators. IEEE Microw. Wirel. Compon. Lett. 13(12), 511–513 (2003)CrossRef
    12.J. García-García, F. Martín, F. Falcone, J. Bonache, I. Gil, T. Lopetegi, M.A.G. Laso, M. Sorolla, R. Marqués, Spurious passband suppression in microstrip coupled line band pass filters by means of split ring resonators. IEEE Microw. Wirel. Compon. Lett. 14(9), 416–418 (2004)CrossRef
    13.H.-T. Chen, S. Palit, T. Tyler, C.M. Bingham, J.M.O. Zide, J.F. O’Hara, D.R. Smith, A.C. Gossard, R.D. Averitt, W.J. Padilla, N.M. Jokerst, A.J. Taylor, Hybrid metamaterials enable fast electrical modulation of freely propagation terahertz waves. Appl. Phys. Lett. 93, 091117 (2008)ADS CrossRef
    14.H.-T. Chen, W.J. Padilla, M.J. Cich, A.K. Azad, R.R. Averitt, A.J. Taylor, A metamaterial solid-state terahertz phase modulator. Nat. Photonics 3, 148–151 (2009)ADS CrossRef
    15.S.A. Cummer, B.-I. Popa, D. Schurig, D.R. Smith, J.B. Pendry, Full-wave simulations of electromagnetic cloaking structures. Phys. Rev. E 74, 036621 (2006)ADS CrossRef
    16.D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)ADS CrossRef
    17.N. Fang, X. Zhang, Imaging properties of a metamaterial superlens. Appl. Phys. Lett. 82(2), 161–163 (2003)ADS CrossRef
    18.K. Aydin, I. Bulu, E. Ozbay, Subwavelength resolution with a negative-index metamaterial superlens. Appl. Phys. Lett. 90, 254102 (2007)ADS CrossRef
    19.H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, W.J. Padilla, A metamaterial absorber for terahertz regime: design, fabrication and characterization. Opt. Express 16(10), 7181–7188 (2008)ADS CrossRef
    20.H. Tao, A.C. Strikwerda, K. Fan, C.M. Bingham, W.J. Padilla, X. Zhang, R.D. Averitt, Terahertz metamaterials on free-standing highly-flexible polyimide substrates. J. Phys. D Appl. Phys. 41(23), 232004 (2008)ADS CrossRef
    21.J.G. Kim, N. Takama, B.J. Kim, H. Fujita, Optical-softlithographic technology for patterning on curved surfaces. J. Micromech. Microeng. 19, 055017 (2009)ADS CrossRef
    22.S. Walia, C.M. Shah, P. Gutruf, H. Nili, D.R. Chowdhury, W. Withayachumnankul, M. Bhaskaran, S. Sriram, Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales. Appl. Phys. Rev. 2, 011303 (2015)ADS CrossRef
    23.J. Li, W. Withayachumnankul, S. Chang, D. Abbott, Metamaterial-based strain sensors. Proceedings of ISSNIP, vol. 6146571, pp. 30–32 (2011)
    24.K. Iwaszczuk, A.C. Strikwerda, K. Fan, X. Zhang, R.D. Averitt, P.U. Jepsen, Flexible metamaterials absorbers for stealth applications at terahertz frequencies. Opt. Express 20(1), 635–643 (2012)ADS CrossRef
    25.R. Alaee, C. Menzel, C. Rockstuhl, F. Lederer, Perfect absorbers on curved surfaces and their potential applications. Opt. Express 20(16), 18370–18376 (2012)ADS CrossRef
    26.D.-H. Kim, D.-S. Kim, S. Hwang, J.-H. Jang, Surface relief structures for a flexible broadband terahertz absorber. Opt. Express 20(15), 16815–16822 (2012)ADS CrossRef
    27.M.P. Hokmabadi, D.S. Wilbert, P. Kung, S.M. Kim, Polarization-dependent, frequency-selective THz stereometamaterial perfect absorber. Phys. Rev. Appl. 1, 044003 (2014)ADS CrossRef
    28.H.T. Chen, Interference theory of metamaterial perfect absorber. Opt. Express 20(7), 7165–7172 (2012)ADS CrossRef
  • 作者单位:Ju-Hyung Kim (1)
    Mohammad P. Hokmabadi (1)
    Soner Balci (1)
    Elmer Rivera (1)
    David Wilbert (1)
    Patrick Kung (1)
    Seongsin Margaret Kim (1)

    1. Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Condensed Matter
    Optical and Electronic Materials
    Nanotechnology
    Characterization and Evaluation Materials
    Surfaces and Interfaces and Thin Films
    Operating Procedures and Materials Treatment
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0630
文摘
The flexible metamaterials have promised to greatly expand our ability to realize a wide range of novel applications including new methods of sensing and cloaking. In this work, flexible metamaterial absorbers, targeted to operate at terahertz frequencies, have been designed, simulated, and fabricated. The absorber structure consisted of a conducting ground plane, a dielectric spacer, and a frequency selective surface which was composed of two layers of nonconcentric, differently sized, single-ring arrays. Absorber structure was designed and simulated such that absorbers exhibited two distinct resonance frequencies with the strength of absorption for both sensitive to the center-to-center spacing of the rings and polarization. The functionality of the absorbers was seen to be similar both in planar and deformed positions, which promises robustness of the conformal flexible metamaterials device under the deformation and uneven surfaces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700