x Sn x x Sn x ) layers were grown with different Sn composition ranging from 0.9% to 7%. Material characterizations, such as secondary-ion mass spectrometry, Rutherford backscattering spectrometry, and x-ray diffraction analysis, show stable Sn incorporation in the Ge lattice. Comparison of the Sn mole fractions obtained using these methods shows that the bowing factor of 0.166?nm (in Vegard’s law) is in close agreement with other experimental data. High-resolution transmission electron microscopy and atomic force microscopy results show that the films have started to relax through the formation of misfit and threading dislocations. Raman spectroscopy, ellipsometry, and photoluminescence (PL) techniques are used to study the structural and optical properties of the films. Room-temperature PL of the films shows that 7% Sn incorporation in the Ge lattice results in a decrease in the direct bandgap of Ge from 0.8?eV to 0.56?eV." />
用户名: 密码: 验证码:
Material Characterization of Ge1?em class="a-plus-plus">x Sn x Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications
详细信息    查看全文
  • 作者:Aboozar Mosleh (1) (2)
    Seyed Amir Ghetmiri (1) (2)
    Benjamin R. Conley (1) (2)
    Michael Hawkridge (3)
    Mourad Benamara (3)
    Amjad Nazzal (4)
    John Tolle (5)
    Shui-Qing Yu (2)
    Hameed A. Naseem (2)
  • 关键词:Germanium alloys ; semiconductor growth ; silicon ; pseudomorphic growth ; CVD ; GeSn
  • 刊名:Journal of Electronic Materials
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:43
  • 期:4
  • 页码:938-946
  • 全文大小:2,121 KB
  • 参考文献:1. E. Kasper, / Front. Optoelectron. Chin. 3, 143 (2010). CrossRef
    2. M.A. Khorrami and S. El-Ghazaly, / Opt. Express 21, 25452 (2013). CrossRef
    3. M. Ali Khorrami, S. El-Ghazaly, S. Yu, and H. Naseem, / J.?Appl. Phys. 111, 094501 (2012). CrossRef
    4. R.A. Soref and C.H. Perry, / J. Appl. Phys. 69, 539 (1991). CrossRef
    5. V. D’Costa, Y. Fang, J. Tolle, J. Kouvetakis, and J. Menéndez, / Thin Solid Films 518, 2531 (2010). CrossRef
    6. H. de Perez Ladron Guevara, A. Rodríguez, H. Navarro-Contreras, and M. Vidal, / Appl. Phys. Lett. 91, 161909 (2007). CrossRef
    7. J. Michel, J. Liu, and L.C. Kimerling, / Nat. Photonics 4, 527 (2010). CrossRef
    8. G. Sun, R. Soref, and H. Cheng, / Opt. Express 18, 19957 (2010). CrossRef
    9. G. Sun, R. Soref, and H. Cheng, / J. Appl. Phys. 108, 033107 (2010). CrossRef
    10. J.D. Sau and M.L. Cohen, / Phys. Rev. B 75, 045208 (2007). CrossRef
    11. E. Simoen, J. Mitard, G. Hellings, G. Eneman, B. De Jaeger, L. Witters, B. Vincent, R. Loo, A. Delabie, and S. Sioncke, / Mater. Sci. Semicond. Process. 15, 588 (2012). CrossRef
    12. S. Gupta, R. Chen, B. Magyari-Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J. S. Harris, and K. C. Saraswat, / Electron Devices Meeting (IEDM), 2011 IEEE International (IEEE, 2011), p. 16.6. 1.
    13. B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D.H. Petersen, O. Hansen, H. Henrichsen, J. Meersschaut, and W. Vandervorst, / Appl. Phys. Lett. 99, 152103 (2011). CrossRef
    14. M. Bauer, J. Taraci, J. Tolle, A. Chizmeshya, S. Zollner, D.J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, / Appl. Phys. Lett. 81, 2992 (2002). CrossRef
    15. A. Harwit, P. Pukite, J. Angilello, and S. Iyer, / Thin Solid Films 184, 395 (1990). CrossRef
    16. R. Lieten, S. Decoster, M. Menghini, J. W. Seo, A. Vantomme, and J. P. Locquet, in / Meeting Abstracts (The Electrochemical Society, 2012), p. 3219.
    17. J. Tolle, A. Chizmeshya, Y. Fang, J. Kouvetakis, V. D’Costa, C. Hu, J. Menendez, and I. Tsong, / Appl. Phys. Lett. 89, 231924 (2006). CrossRef
    18. J. Kouvetakis, J. Mathews, R. Roucka, A.V.G. Chizmeshya, J. Tolle, and J. Menendez, / IEEE Photonics J. 2, 924 (2010). CrossRef
    19. T. King and K.C. Saraswat, / IEEE Electron Device Lett. 13, 309 (1992). CrossRef
    20. R. Beeler, R. Roucka, A. Chizmeshya, J. Kouvetakis, and J. Menéndez, / Phys. Rev. B 84, 035204 (2011). CrossRef
    21. J. Matthews and A. Blakeslee, / J. Cryst. Growth 27, 118 (1974).
    22. R. People and J. Bean, / Appl. Phys. Lett. 47, 322 (1985). CrossRef
    23. J. Kouvetakis and A.V.G. Chizmeshya, / J. Mater. Chem. 17, 1649 (2007). CrossRef
    24. R. Cheng, W. Wang, X. Gong, L. Sun, P. Guo, H. Hu, Z. Shen, G. Han, and Y. Yeo, / ECS J. Solid State Sci. Technol. 2, P138 (2013). CrossRef
    25. Y.H. Jo, I. Jung, C.S. Choi, I. Kim, and H.M. Lee, / Nanotechnology 22, 225701 (2011). CrossRef
    26. P. Moontragoon, R. Soref, and Z. Ikonic, / J. Appl. Phys. 112, 073106 (2012). CrossRef
  • 作者单位:Aboozar Mosleh (1) (2)
    Seyed Amir Ghetmiri (1) (2)
    Benjamin R. Conley (1) (2)
    Michael Hawkridge (3)
    Mourad Benamara (3)
    Amjad Nazzal (4)
    John Tolle (5)
    Shui-Qing Yu (2)
    Hameed A. Naseem (2)

    1. MicroElectronics-Photonics Program, University of Arkansas, Fayetteville, AR, 72701, USA
    2. Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
    3. Institute for Nano Science and Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
    4. Division of Engineering and Physics, Wilkes University, Wilkes-Barre, PA, 18766, USA
    5. ASM, 3440 East University Drive Phoenix, Phoenix, AR, 85034, USA
  • ISSN:1543-186X
文摘
High-quality compressive-strained Ge1?em class="a-plus-plus">x Sn x /Ge films have been deposited on Si(001) substrate using a mainstream commercial chemical vapor deposition reactor. The growth temperature was kept below 450°C to be compatible with Si complementary metal–oxide–semiconductor processes. Germanium tin (Ge1?em class="a-plus-plus">x Sn x ) layers were grown with different Sn composition ranging from 0.9% to 7%. Material characterizations, such as secondary-ion mass spectrometry, Rutherford backscattering spectrometry, and x-ray diffraction analysis, show stable Sn incorporation in the Ge lattice. Comparison of the Sn mole fractions obtained using these methods shows that the bowing factor of 0.166?nm (in Vegard’s law) is in close agreement with other experimental data. High-resolution transmission electron microscopy and atomic force microscopy results show that the films have started to relax through the formation of misfit and threading dislocations. Raman spectroscopy, ellipsometry, and photoluminescence (PL) techniques are used to study the structural and optical properties of the films. Room-temperature PL of the films shows that 7% Sn incorporation in the Ge lattice results in a decrease in the direct bandgap of Ge from 0.8?eV to 0.56?eV.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700