用户名: 密码: 验证码:
A constraint violation suppressing formulation for spatial multibody dynamics with singular mass matrix
详细信息    查看全文
  • 作者:Jie Zhang ; Donghuan Liu ; Yinghua Liu
  • 关键词:Spatial multibody dynamics ; Constraint violation ; Mass matrix singularity ; Energy error norm
  • 刊名:Multibody System Dynamics
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:36
  • 期:1
  • 页码:87-110
  • 全文大小:1,255 KB
  • 参考文献:1. Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011004 (2007). doi:10.鈥?115/鈥?.鈥?803257 CrossRef
    2. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2007). doi:10.鈥?115/鈥?.鈥?803258 CrossRef
    3. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems V.1: Basic Methods. Allyn & Bacon, Boston (1989)
    4. Jalon, J.G.D., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge. Springer, New York (1994) CrossRef
    5. Eich-Soellner, E., F眉hrer, C.: Numerical Methods in Multibody Dynamics, vol. 45. Springer, Berlin (1998) MATH CrossRef
    6. Von Schwerin, R.: Multibody System Simulation: Numerical Methods, Algorithms, and Software, vol. 7. Springer, Berlin (1999) MATH CrossRef
    7. Simeon, B.: MBSPACK-numerical integration software for constraines mechanical motion. Surv. Math. Ind. 5, 169鈥?02 (1995) MATH MathSciNet
    8. Terze, Z., Naudet, J.: Geometric properties of projective constraint violation stabilization method for generally constrained multibody systems on manifolds. Multibody Syst. Dyn. 20(1), 85鈥?06 (2008). doi:10.鈥?007/鈥媠11044-008-9107-5 MATH CrossRef MathSciNet
    9. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Math. 1(1), 1鈥?6 (1972). doi:10.鈥?016/鈥?045-7825(72)90018-7 MATH MathSciNet
    10. Flores, P., Machado, M., Seabra, E., Tavares da Silva, M.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6(1), 011019 (2010). doi:10.鈥?115/鈥?.鈥?002338 CrossRef
    11. Park, K.C., Chiou, J.C.: Stabilization of computational procedures for constrained dynamical systems. J. Guid. Control Dyn. 11(4), 365鈥?70 (1988). doi:10.鈥?514/鈥?.鈥?0320 MATH CrossRef MathSciNet
    12. Park, K.C., Chiou, J.C., Downer, J.D.: Explicit-implicit staggered procedure for multibody dynamics analysis. J. Guid. Control Dyn. 13(3), 562鈥?70 (1990). doi:10.鈥?514/鈥?.鈥?5370 MATH CrossRef MathSciNet
    13. Bayo, E., Garcia De Jalon, J., Serna, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Math. 71(2), 183鈥?95 (1988). doi:10.鈥?016/鈥?045-7825(88)90085-0 MATH MathSciNet
    14. Bayo, E., Avello, A.: Singularity-free augmented Lagrangian algorithms for constrained multibody dynamics. Nonlinear Dyn. 5(2), 209鈥?31 (1994). doi:10.鈥?007/鈥媌f00045677
    15. Braun, D.J., Goldfarb, M.: Eliminating constraint drift in the numerical simulation of constrained dynamical systems. Comput. Methods Appl. Math. 198(37鈥?0), 3151鈥?160 (2009). doi:10.鈥?016/鈥媕.鈥媍ma.鈥?009.鈥?5.鈥?13 MATH MathSciNet
    16. Blajer, W.: Methods for constraint violation suppression in the numerical simulation of constrained multibody systems鈥攁 comparative study. Comput. Methods Appl. Math. 200(13鈥?6), 1568鈥?576 (2011). doi:10.鈥?016/鈥媕.鈥媍ma.鈥?011.鈥?1.鈥?07 MATH MathSciNet
    17. Lubich, C.: Extrapolation integrators for constrained multibody systems. Impact Comput. Sci. Eng. 3(3), 213鈥?34 (1991). doi:10.鈥?016/鈥?899-8248(91)90008-I MATH CrossRef MathSciNet
    18. Eich, E.: Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints. SIAM J. Numer. Anal. 30(5), 1467鈥?482 (1993). doi:10.鈥?137/鈥?730076 MATH CrossRef MathSciNet
    19. Andrzejewski, T., Bock, H.: Recent advances in the numerical integration of multibody systems. In: Schiehlen, W. (ed.) Advanced Multibody System Dynamics. Solid Mechanics and Its Applications, vol. 20, pp. 127鈥?51. Springer, The Netherlands (1993) CrossRef
    20. Yoon, S., Howe, R.M., Greenwood, D.T.: Geometric elimination of constraint violations in numerical simulation of Lagrangian equations. J. Mech. Des. 116(4), 1058鈥?064 (1994). doi:10.鈥?115/鈥?.鈥?919487
    21. Yu, Q., Chen, I.M.: A direct violation correction method in numerical simulation of constrained multibody systems. Comput. Mech. 26(1), 52鈥?7 (2000). doi:10.鈥?007/鈥媠004660000149 MATH CrossRef
    22. Aghili, F., Piedb艙uf, J.-C.: Simulation of motion of constrained multibody systems based on projection operator. Multibody Syst. Dyn. 10(1), 3鈥?6 (2003). doi:10.鈥?023/鈥媋:鈥?024584323751 MATH CrossRef MathSciNet
    23. Blajer, W.: A geometric unification of constrained system dynamics. Multibody Syst. Dyn. 1(1), 3鈥?1 (1997). doi:10.鈥?023/鈥媋:鈥?009759106323 MATH CrossRef MathSciNet
    24. Blajer, W.: Elimination of constraint violation and accuracy aspects in numerical simulation of multibody systems. Multibody Syst. Dyn. 7(3), 265鈥?84 (2002). doi:10.鈥?023/鈥媋:鈥?015285428885 MATH CrossRef MathSciNet
    25. Nikravesh, P.: Initial condition correction in multibody dynamics. Multibody Syst. Dyn. 18(1), 107鈥?15 (2007). doi:10.鈥?007/鈥媠11044-007-9069-z MATH CrossRef MathSciNet
    26. Terze, Z., Lefeber, D., Mufti膰, O.: Null space integration method for constrained multibody systems with no constraint violation. Multibody Syst. Dyn. 6(3), 229鈥?43 (2001). doi:10.鈥?023/鈥媋:鈥?012090712309 MATH CrossRef
    27. Terze, Z., Naudet, J.: Structure of optimized generalized coordinates partitioned vectors for holonomic and non-holonomic systems. Multibody Syst. Dyn. 24(2), 203鈥?18 (2010). doi:10.鈥?007/鈥媠11044-010-9195-x MATH CrossRef MathSciNet
    28. Bayo, E., Ledesma, R.: Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamics. Nonlinear Dyn. 9(1鈥?), 113鈥?30 (1996). doi:10.鈥?007/鈥媌f01833296 CrossRef MathSciNet
    29. Cuadrado, J., Cardenal, J., Bayo, E.: Modeling and solution methods for efficient real-time simulation of multibody dynamics. Multibody Syst. Dyn. 1(3), 259鈥?80 (1997). doi:10.鈥?023/鈥媋:鈥?009754006096 MATH CrossRef MathSciNet
    30. Blajer, W.: Augmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancy. Multibody Syst. Dyn. 8(2), 141鈥?59 (2002). doi:10.鈥?023/鈥媋:鈥?019581227898 MATH CrossRef
    31. Garc铆a Orden, J.: Energy considerations for the stabilization of constrained mechanical systems with velocity projection. Nonlinear Dyn. 60(1鈥?), 49鈥?2 (2010). doi:10.鈥?007/鈥媠11071-009-9579-8 MATH CrossRef
    32. Garc铆a Orden, J., Conde Mart铆n, S.: Controllable velocity projection for constraint stabilization in multibody dynamics. Nonlinear Dyn. 68(1鈥?), 245鈥?57 (2012). doi:10.鈥?007/鈥媠11071-011-0224-y MATH CrossRef
    33. Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. A, Math. Phys. Eng. Sci. 462(2071), 2097鈥?117 (2006). doi:10.鈥?098/鈥媟spa.鈥?006.鈥?662 MATH CrossRef MathSciNet
    34. Garc铆a de Jal贸n, J., Guti茅rrez-L贸pez, M.D.: Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces. Multibody Syst. Dyn. 30(3), 311鈥?41 (2013). doi:10.鈥?007/鈥媠11044-013-9358-7 MATH CrossRef MathSciNet
    35. Haghshenas-Jaryani, M., Bowling, A.: A new switching strategy for addressing Euler parameters in dynamic modeling and simulation of rigid multibody systems. Multibody Syst. Dyn. 30(2), 185鈥?97 (2013). doi:10.鈥?007/鈥媠11044-012-9333-8 CrossRef MathSciNet
    36. Vlasenko, D., Kasper, R.: Implementation of consequent stabilization method for simulation of multibodies described in absolute coordinates. Multibody Syst. Dyn. 22(3), 297鈥?19 (2009). doi:10.鈥?007/鈥媠11044-009-9167-1 MATH CrossRef MathSciNet
    37. Schwab, A., Meijaard, J.: How to draw Euler angles and utilize Euler parameters. In: ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2006, pp. 259鈥?65 (2006). American Society of Mechanical Engineers
    38. Mariti, L., Belfiore, N.P., Pennestr矛, E., Valentini, P.P.: Comparison of solution strategies for multibody dynamics equations. Int. J. Numer. Methods Eng. 88(7), 637鈥?56 (2011). doi:10.鈥?002/鈥媙me.鈥?190 MATH CrossRef
    39. Nikravesh, P.: Some methods for dynamic analysis of constrained mechanical systems: a survey. In: Haug, E. (ed.) Computer Aided Analysis and Optimization of Mechanical System Dynamics. NATO ASI Series, vol. 9, pp. 351鈥?68. Springer, Berlin (1984) CrossRef
    40. Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. R. Soc. Lond., Math. Phys. Sci. 439(1906), 407鈥?10 (1992). doi:10.鈥?307/鈥?2227 MATH CrossRef MathSciNet
    41. de Falco, D., Pennestr矛, E., Vita, L.: Investigation of the influence of pseudoinverse matrix calculations on multibody dynamics simulations by means of the Udwadia鈥揔alaba formulation. J. Aerosp. Eng. 22(4), 365鈥?72 (2009). doi:10.鈥?061/鈥?ASCE)0893-1321(2009)22:鈥?(365) CrossRef
    42. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, San Diego (1981) MATH
    43. Campbell, S.L., Meyer, C.D.: Generalized Inverses of Linear Transformations, vol. 56. SIAM, Philadelphia (2009) MATH CrossRef
    44. Steeves, E.C., Walton, W.: A new matrix theorem and its application for establishing independent coordinates for complex dynamical systems with constraints. NASA Technical Report TR R-326 (1969)
    45. Youngjin, C., Joono, C.: New expressions of 2脳2 block matrix inversion and their application. IEEE Trans. Autom. Control 54(11), 2648鈥?653 (2009). doi:10.鈥?109/鈥媡ac.鈥?009.鈥?031568 CrossRef
    46. McPhee, J., Shi, P., Piedbuf, J.C.: Dynamics of multibody systems using virtual work and symbolic programming. Math. Comput. Model. Dyn. Syst. 8(2), 137鈥?55 (2002). doi:10.鈥?076/鈥媘cmd.鈥?.鈥?.鈥?37.鈥?591 MATH CrossRef
    47. Uchida, T., Vyasarayani, C.P., Smart, M., McPhee, J.: Parameter identification for multibody systems expressed in differential-algebraic form. Multibody Syst. Dyn. 31(4), 393鈥?03 (2014). doi:10.鈥?007/鈥媠11044-013-9390-7 MATH CrossRef MathSciNet
  • 作者单位:Jie Zhang (1)
    Donghuan Liu (2)
    Yinghua Liu (1)

    1. Department of Engineering Mechanics, AML, Tsinghua University, Beijing, 100084, People鈥檚 Republic of China
    2. Department of Applied Mechanics, University of Science and Technology Beijing, Beijing, 100083, People鈥檚 Republic of China
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Optimization
    Electronic and Computer Engineering
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-272X
文摘
The constraint violation problem of spatial multibody systems is analyzed in this paper. The mass matrix is singular in the equations of motion when the Euler parameters with the normalization constraints are used to describe the orientation of the spatial rigid body. The constrained and weighted least-squares-based geometrical projection method is implemented to suppress the constraint violation during numerical integration, and the explicit correction formulation can be obtained by the block matrix inversion scheme. The mass matrix weighted correction formulation gives the physically consistent energy norm, but it needs the mass matrix to be positive definite. To extend the physically consistent correction formulation for solving spatial multibody systems鈥?constraint violation problems with a singular mass matrix, a Modified Mass-Orthogonal Projection Method (MMOPM) and a Generalized Physical Orthogonal Projection Method (GPOPM) are proposed. MMOPM modifies the mass matrix directly by adding a penalty factor matrix which appears in the mass-orthogonal projection method and leads to a positive definite weight matrix that satisfies the block matrix inversion scheme condition. GPOPM is a generalization of the physical orthogonal projection method where the constrained least-squares method is weighted by the positive semi-definite mass matrix and the correction formulation is given by using the generalized block matrix inversion scheme. Numerical results show the feasibility and accuracy of the presented MMOPM and GPOPM. The constraints in position and velocity can reach machine precision during numerical integration. The elimination of violation of position constrains may require few iterations, while the violation of velocity constraints is removed in one step, and GPOPM is more accurate in velocity correction than MMOPM. Keywords Spatial multibody dynamics Constraint violation Mass matrix singularity Energy error norm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700