用户名: 密码: 验证码:
Physical Limits of Solar Energy Conversion in the Earth System
详细信息    查看全文
  • 关键词:Carnot limit ; Global estimates ; Photosynthesis ; Solar energy ; Theoretical potentials ; Thermodynamic limits ; Thermodynamics
  • 刊名:Topics in Current Chemistry
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:371
  • 期:1
  • 页码:1-22
  • 全文大小:614 KB
  • 参考文献:1.Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schloemer S, von Stechnow C (eds) (2011) IPCC special report on renewable energy sources and climate change mitigation. Prepared by working group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
    2.Rogner HH, Barthel F, Cabrera M, Faaij A, Giroux M, Hall D, Kagramanian V, Knonov S, Lefevre T, Moreira R, Noetstaller R, Odell P, Taylor M (2000) Energy resources. In: World energy assessment. Energy and the challenge of sustainability. United Nations Development Programme, United Nations Department of Economic and Social Affairs, and World Energy Council, New York, pp 135–171
    3.Petela R (1964) Exergy of heat radiation. J Heat Trans 86:187–192CrossRef
    4.Press WH (1976) Theoretical maximum for energy from direct and diffuse sunlight. Nature 264:734–735CrossRef
    5.Landsberg PT, Tonge G (1979) Thermodynamics of the conversion of diluted radiation. J Phys A 12:551–562CrossRef
    6.Atkins P, de Paula J (2010) Physical chemistry, 9th edn. Oxford University Press, New York
    7.Eddington AS (1928) The nature of the physical world. Macmillan, New York
    8.Planck M (1906) Theorie der Wärmestrahlung. Barth, Leipzig
    9.Kleidon A (2010) Life, hierarchy, and the thermodynamic machinery of planet Earth. Phys Life Rev 7:424–460CrossRef
    10.Kleidon A (2012) How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet? Phil Trans R Soc A 370:1012–1040CrossRef
    11.Wu W, Liu Y (2010) Radiation entropy flux and entropy production of the Earth system. Rev Geophys 48:RG2003CrossRef
    12.Kleidon A, Renner M (2013) Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications. Hydrol Earth Syst Sci 17:2873–2892CrossRef
    13.Kleidon A, Renner M (2013) A simple explanation for the sensitivity of the hydrologic cycle to climate change. Earth Syst Dyn 4:455–465. doi:10.​5194/​esd-4-455-2013 CrossRef
    14.Kleidon A, Renner M, Porada P (2014) Estimates of the climatological land surface energy and water balance derived from maximum convective power. Hydrol Earth Syst Sci 18:2201–2218CrossRef
    15.Kleidon A, Kravitz B, Renner M (2015) The hydrologic sensitivity to global warming and solar geoengineering derived from thermodynamic constraints. Geophys Res Lett 42:138–144CrossRef
    16.Stephens GL, Li J, Wild M, Clayson CA, Loeb N, Kato S, L’Ecuyer T, Stackhouse PW, Lebsock M, Andrews T (2012) An update on Earth’s energy balance in light of the latest global observations. Nat Geosci 5:691–696CrossRef
    17.Pauluis O (2005) Water vapor and entropy production in the Earth’s atmosphere. In: Kleidon A, Lorenz RD (eds) Non-equilibrium thermodynamics and the production of entropy: life, Earth, and beyond. Springer, Heidelberg, pp 173–190
    18.Miller LM, Gans F, Kleidon A (2011) Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth Syst Dyn 2:1–12CrossRef
    19.Gans F, Miller LM, Kleidon A (2012) The problem of the second wind turbine – a note on a common but flawed wind power estimation method. Earth Syst Dyn 3:79–86CrossRef
    20.Ferrari R, Wunsch C (2009) Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu Rev Fluid Mech 41:253–282CrossRef
    21.Blackman FF (1905) Optima and limiting factors. Ann Bot 19:281–295
    22.Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9(3):747–766CrossRef
    23.Sharkey TD (1985) Photosynthesis in intact leaves of c3 plants: physics, physiology and rate limitations. Bot Rev 51:53–105CrossRef
    24.Hill R, Rich PR (1983) A physical interpretation for the natural photosynthetic process. Proc Natl Acad Sci U S A 80:978–982CrossRef
    25.Duysens LNM (1958) The path of light energy in photosynthesis. In: Brookhaven Symposia in Biology 1: the photochemical apparatus, its structure and function. Brookhaven Natl. Lab., Upton, pp 10–25
    26.Radmer R, Kok B (1977) Photosynthesis: limited yields, unlimited dreams. Bioscience 27:599–605CrossRef
    27.Landsberg PT, Tonge G (1980) Thermodynamic energy conversion efficiencies. J Appl Phys 51:R1CrossRef
    28.Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159CrossRef
    29.Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete AR, Zarco-Tejada P, Lee JE, Moran MS, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, Gianelle D, Klumpp K, Cescatti A, Baker JM, Griffis TJ (2014) Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc Natl Acad Sci U S A 111:E1327–E1333CrossRef
    30.Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Qúeŕe CL, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
    31.Trieb F, Schillings C, O’Sullivan M, Pregger T, Hoyer-Klick C (2009) Global potential of concentrating solar power. In: Proceedings of the SolarPACES Conference, Berlin
    32.Lewis N (2007) Toward cost-effective solar energy use. Science 315(5813):798–801CrossRef
    33.Davies JH, Davies DR (2010) Earth’s surface heat flux. Solid Earth 1:5–24. doi:10.​5194/​se-1-5-2010 , http://​www.​solid-earth.​net/​1/​5/​2010/​ CrossRef
    34.Kagan BA, Sündermann J (1996) Dissipation of tidal energy, paleotides, and evolution of the Earth-Moon system. Adv Geophys 38:179–266CrossRef
    35.EIA (2009) International energy outlook. Tech. rep., Energy Information Administration, US Dept. of Energy, Energy Information Administration
    36.Vitousek PM, Ehrlich PR, Ehrlich AH, Matson PA (1986) Human appropriation of the products of photosynthesis. Bioscience 36:368–373CrossRef
    37.Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Pluttzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary productivity in Earth’s terrestrial ecosystems. Proc Natl Acad Sci U S A 104:12942–12947CrossRef
    38.AGEB (2014) Auswertungstabellen zur Energiebilanz Deutschland. Tech. Rep., Arbeitsgemeinschaft Energiebilanzen e.V. www.​ag-energiebilanzen.​de
  • 作者单位:Axel Kleidon (19)
    Lee Miller (19)
    Fabian Gans (19)

    19. Max-Planck-Institute for Biogeochemistry, Hans-Knoell-Str. 10, 07745, Jena, Germany
  • 丛书名:Solar Energy for Fuels
  • ISBN:978-3-319-23099-3
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Organic Chemistry
    Inorganic Chemistry
    Theoretical and Computational Chemistry
    Medicinal Chemistry
    Biochemistry
    Organometallic Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-5049
文摘
Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation – which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion – as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW = 1015 W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar radiation is directly converted into renewable energy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700