用户名: 密码: 验证码:
Capacity enhancement for a rate-variance-envelop-based admission control in IEEE 802.11e HCCA WLANs
详细信息    查看全文
  • 作者:Jeng-Ji Huang ; Yao-Jen Liang ; Chung-Yen Su
  • 关键词:IEEE 802.11e ; Hybrid coordination function (HCF) ; Admission control
  • 刊名:Wireless Networks
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:21
  • 期:7
  • 页码:2253-2261
  • 全文大小:794 KB
  • 参考文献:1.IEEE Std 802.11e-2005. (2005). IEEE standard for information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 8: Medium access control (MAC) quality of service enhancements.
    2.Leonovich, A., & Ferng, H.-W. (2013). Modeling the IEEE 802.11e HCCA mode. Wireless Networks, 19(5), 771-83.CrossRef
    3.Jansang, A., & Phonphoem, A. (2013). A simple analytical model for expected frame waiting time evaluation in IEEE 802.11e HCCA mode. Wireless Personal. Communications, 69(4), 1899-924.CrossRef
    4.Ng, B., Tan, Y. F., & Roger, Y. (2013). Improved utilization for joint HCCA-EDCA access in IEEE 802.11e WLANs. Optimization Letters, 7(8), 1711-724.MATH MathSciNet CrossRef
    5.Lagkas, T. D., Stratogiannis, D. G., & Chatzimisios, P. (2013). Modeling and performance analysis of an alternative to IEEE 802.11e hybrid control function. Telecommunication Systems, 52(4), 1961-976.CrossRef
    6.Piro, G., Grieco, L. A., Boggia, G., & Camarda, P. (2012). QoS in wireless LAN: A comparison between feedback-based and earliest due-date approaches. Computer Communications, 35(3), 298-08.CrossRef
    7.Skyrianoglou, D., Passas, N., & Salkintzis, A. K. (2006). ARROW: An efficient traffic scheduling algorithm for IEEE 802.11e HCCA. IEEE Transactions on Wireless Communications, 5(12), 3558-567.CrossRef
    8.Grilo, A. et al. (2003). A scheduling algorithm for QoS support in IEEE 802.11e networks. IEEE Wireless Communications Magazine, 10(3), 36-3.
    9.Feng, L., & Li, J. (2012). Integer-multiple-spacing-based scheduling for multimedia applications in IEEE 802.11e HCCA wireless networks. Computer Networks, 56, 3767-782.CrossRef
    10.Ruscelli, A. L., Cecchetti, G., Alifano, A., & Lipari, G. (2012). Enhancement of QoS support of HCCA schedulers using EDCA function in IEEE 802.11e networks. Ad Hoc Networks, 10(2), 147-61.CrossRef
    11.Chen, Y.-S., Lee, Y.-W., & Park, J. H. (2011). Enhanced HCCA mechanism for multimedia traffics with QoS support in IEEE 802.11e networks. Journal of Network and Computer Applications, 34, 1566-571.CrossRef
    12.Vergados, D. J., Vergados, D. D., & Douligeris, C. (2009). DPS: An architecture for VBR scheduling in IEEE 802.11e HCCA networks with multiple access points. Mobile Networks and Applications, 14(6), 744-59.CrossRef
    13.Chou, Z.-T., Huang, C.-Q., & Chang, J. M. (2014). QoS provisioning for wireless LANs with multi-beam access point. IEEE Transactions on Mobilie Computing, 13(9), 2113-127.CrossRef
    14.Lee, T.-H., & Hsieh, J.-R. (2013). Low-complexity class-based scheduling algorithm for scheduled automatic power-save delivery for wireless LANs. IEEE Transactions on Mobilie Computing, 12(3), 571-80.CrossRef
    15.Chou, C.-T., Shankar, S., & Shin, K. (2005). Achieving per-stream QoS with distributed airtime allocation and admission control in IEEE 802.11e wireless LANs. IEEE Infocom, 3, 1584-595.
    16.Gao, D., Cai, J., & Chen, C. W. (2008). Admission control based on rate-variance envelop for VBR traffic over IEEE 802.11e HCCA WLANs. IEEE Transactions on Vehicular Technology, 57(3), 1778-788.CrossRef
    17.Sivaraman, V., & Chiussi, F. (2000). Providing end-to-end statistical delay guarantees with earliest deadline first scheduling and per-hop traffic shaping. IEEE Infocom, 2, 631-40.
    18.Kumaran, K., & Mandjes, M. (2001). Multiplexing regulated traffic streams: Design and performance. IEEE Infocom, 1, 527-36.
    19.Knightly, E. W. (1998). Enforceable quality of service guarantees for bursty traffic streams. IEEE Infocom, 2, 635-42.
    20.Gross, D., Shortle, J. F., Thompson, J. M., & Harris, C. M. (2008). Fundamentals of queueing theory (4th ed.). New York: Wiley.CrossRef
    21.Nakamura, K., & Shioda, S. (2004). Statistical multiplexing of regulated sources having deterministic subadditive envelopes. Journal of the Operations Research Society of Japan, 47(4), 359-78.MATH MathSciNet
    22.NS-2 network simulator. http://?www.?isi.?edu/?nsnam/?ns/-/span> .
    23.ITU-T recommendation G.114 (1996). One-way transmission time.
  • 作者单位:Jeng-Ji Huang (1)
    Yao-Jen Liang (2)
    Chung-Yen Su (1)

    1. Department of Applied Electronics Technology, National Taiwan Normal University, Taipei, 10610, Taiwan, ROC
    2. Department of Electrical Engineering, National Chiayi University, Chiayi City, 60004, Taiwan, ROC
  • 刊物类别:Computer Science
  • 刊物主题:Computer Communication Networks
    Electronic and Computer Engineering
    Business Information Systems
  • 出版者:Springer Netherlands
  • ISSN:1572-8196
文摘
A rate-variance-envelop-based admission control (RVAC) has previously been proposed for IEEE 802.11e wireless networks. By leveraging the multiplexing gain of variable bit rate traffic, RVAC enjoys high network utilization. However, it may suffer from capacity loss due to large polling overheads, and its conservative approach to ensure the quality of service. To overcome these issues, we propose a per-flow polling scheme and derive the capacity by utilizing a stochastic ON–OFF model together with a D/G/1 model. The advantages of our method over RVAC are demonstrated through both analytical and simulation results in respect to the system capacity. Keywords IEEE 802.11e Hybrid coordination function (HCF) Admission control

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700