用户名: 密码: 验证码:
Mode I Fracture Characterization of Bituminous Paving Mixtures at Intermediate Service Temperatures
详细信息    查看全文
  • 作者:F. T. S. Arag?o (1)
    Y.-R. Kim (2)
  • 关键词:Bituminous paving mixtures ; Fracture ; Viscoelasticity ; Cohesive zone ; Digital image correlation
  • 刊名:Experimental Mechanics
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:52
  • 期:9
  • 页码:1423-1434
  • 全文大小:882KB
  • 参考文献:1. Bazant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press
    2. Chong KP, Li VC, Einstein HN (1989) Size effects, process zone and tension softening behavior in fracture of geomaterials. Eng Fract Mech 34(3):669-78 CrossRef
    3. Soares JB, Freitas FA, Allen DH (2003) Crack modeling of asphaltic mixtures considering heterogeneity of the material. Transp Res Rec 1832:113-20 CrossRef
    4. Li X, Marasteanu MO (2005) Cohesive modeling of fracture in asphalt mixtures at low temperatures. Int J Fract 136:285-08 CrossRef
    5. Song SH, Paulino GH, Buttlar WG (2006) A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material. Eng Fract Mech 73(18):2829-847 CrossRef
    6. Arag?o FTS, Kim YR, Lee J, Allen DH (2011) Micromechanical model for heterogeneous asphalt concrete mixtures subjected to fracture failure. J Mater Civ Eng 23(1):30-8 CrossRef
    7. Souza FV, Soares JB, Allen DH, Evangelista Jr F (2004) Model for predicting damage evolution in heterogeneous viscoelastic asphaltic mixtures. Transp Res Rec 1891:131-39 CrossRef
    8. Kim YR, Allen DH, Little DN (2007) Computational constitutive model for predicting nonlinear viscoelastic damage and fracture failure of asphalt concrete mixtures. Int J Geomech 7(2):102-10 CrossRef
    9. Kim YR, Allen DH, Little DN (2006) Computational model to predict fatigue damage behavior of asphalt mixtures under cyclic loading. Transp Res Rec 1970:196-06 CrossRef
    10. Kim YR, Allen DH, Little DN (2005) Damage-induced modeling of asphalt mixtures through computational micromechanics and cohesive zone fracture. J Mater Civ Eng 17(5):477-84 CrossRef
    11. Song SH, Wagoner MP, Paulino GH (2008) δ25 crack opening displacement parameter in cohesive zone models: experiments and simulations in asphalt concrete. Fatigue Fract Eng Mater Struct 31:850-56 CrossRef
    12. Kim YR, Arag?o FTS, Allen DH, Little DN (2010) Damage modeling of bituminous mixtures through computational micromechanics and cohesive zone fracture. Can J Civ Eng 37:1125-136 CrossRef
    13. Kim H, Buttlar WG (2009) Finite element cohesive fracture modeling of airport pavements at low temperatures. Cold Reg Sci Technol 57:123-30 CrossRef
    14. Yoon C, Allen DH (1999) Damage dependent constitutive behavior and energy release rate for a cohesive zone in a thermoviscoelastic solid. Int J Fract 96:55-4 CrossRef
    15. Allen DH, Searcy CR (2001) A micromechanical model for a viscoelastic cohesive zone. Int J Fract 107:159-76 CrossRef
    16. Majidzadeh K, Kaufmann EM, Ramsamooj DV (1971) Application of fracture mechanics in the analysis of pavement fatigue. Proc Assoc Asph Paving Technol 40:227-46
    17. Wagoner MP, Buttlar WG, Paulino GH (2005) Development of a single-edge notched beam test for asphalt concrete mixtures. J Test Eval 33(6):452-60
    18. Wagoner MP, Buttlar WG, Paulino GH (2005) Disk-shaped compact tension test for asphalt concrete fracture. Exp Mech 45(3):270-77 CrossRef
    19. Wagoner MP, Buttlar WG, Paulino GH, Blankenship P (2005) Investigation of the fracture resistance of hot-mix asphalt concrete using a disk-shaped compact tension test. Transp Res Rec 1929:183-92 CrossRef
    20. You Z, Buttlar WG (2006) Micromechanical modeling approach to predict compressive dynamic moduli of asphalt mixture using the distinct element method. Transp Res Rec 1970:73-3 CrossRef
    21. Kim H, Buttlar WG (2009) Discrete fracture modeling of asphalt concrete. Int J Solids Struct 46:2593-604 CrossRef
    22. Chong KP, Kuruppu MD (1984) New specimen for fracture toughness determination for rock and other materials. Int J Fract 26:R59–R62 CrossRef
    23. Lim IL, Johnston IW, Choi SK, Boland JN (1994) Fracture testing of soft rock with semicircular specimens under three-point bending, Part 2—mixed-mode. Int J Rock Mech Min Sci 31(3):199-12 CrossRef
    24. Adamson RM, Dempsey JP, Mulmule SV (1996) Fracture analysis of semicircular and semicircular-bend geometries. Int J Fract 77(3):213-22 CrossRef
    25. Molenaar AAA, Scarpas A, Liu X, Erkens SMJG (2002) Semicircular bending test, simple but useful? J Assoc Asph Paving Technol 71:794-15
    26. van Rooijen RC, de Bondt AH (2008) Crack propagation performance evaluation of asphaltic mixes using a new procedure based on cyclic semi-circular bending tests. Pavement Cracking: Mechanisms, Modeling, Detection, Testing, and Case Histories. CRC Press, 437-46
    27. Kim YR, Daniel JS, Wen H (2002) Fatigue performance evaluation of WestTrack asphalt mixtures using viscoelastic continuum damage approach. Final Report No. FHWA/NC/2002-04, North Carolina State University
    28. Kim Y, Lee J, Lutif JES (2010) Geometrical evaluation and experimental verification to determine representative volume elements of heterogeneous asphalt mixtures. J Test Eval 38(6):660-66
    29. Seo Y, Kim YR, Witczak MW, Bonaquist R (2002) Application of digital image correlation method to mechanical testing of asphalt-aggregate mixtures. Transp Res Rec 1789:162-72 CrossRef
    30. Birgisson B, Montepara A, Romeo E, Roque R, Roncellla R, Tebaldi G (2007) Determination of fundamental tensile failure limits of mixtures. J Assoc Asph Paving Technol 76:303-44
    31. Shen B, Paulino GH (2011) Direct extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique. Exp Mech 51:143-63 CrossRef
    32. Shen B, Paulino GH (2011) Identification of cohesive zone model and elastic parameters of fiber-reinforced cementitious composites using digital image correlation and a hybrid inverse technique. Cem Concr Compos 33:572-85 CrossRef
    33. Li X, Marasteanu MO (2004) Evaluation of the low temperature fracture resistance of asphalt mixtures using the semi circular bend test. J Assoc Asph Paving Technol 73:401-26
    34. Geubelle P, Baylor J (1998) Impact-induced delamination of laminated composites: a 2D simulation. Compos B Eng 29(5):589-02 CrossRef
    35. Espinosa HD, Zavattieri PD (2003) A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials, part I: theory and numerical implementation. Mech Mater 35:333-64 CrossRef
    36. Rahul-Kumar P, Jagota A, Benninson SJ, Saigal S, Muralidhar S (1999) Polymer interfacial fracture simulations using cohesive elements. Acta Mater 47(15):4161-169 CrossRef
    37. Nguyen TD, Govindjee S, Klein PA, Gao H (2004) A rate-dependent cohesive continuum model for the study of crack dynamics. Comput Methods Appl Mech Eng 193:3239-265 CrossRef
    38. Marzi S, Hesebeck O, Brede M, Kleiner F (2009) A rate-dependent cohesive zone model for adhesively bonded joints loaded in mode I. J Adhes Sci Technol 23:881-98 CrossRef
  • 作者单位:F. T. S. Arag?o (1)
    Y.-R. Kim (2)

    1. Department of Civil Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
    2. Department of Civil Engineering, 224 Engineering Building, Kyung Hee University, Yongin-si, Gyeonggi-do, 446-701, South Korea
  • ISSN:1741-2765
文摘
This study presents an integrated approach combining experimental tests and numerical modeling to characterize mode I fracture behavior of bituminous paving mixtures subjected to a wide range of loading rates at intermediate temperature conditions. A simple experimental protocol is developed using the semi-circular bending (SCB) test geometry. The local fracture behavior at the initial notch tip of the SCB specimens is monitored using high-speed cameras with a digital image correlation (DIC) system. The DIC results of the SCB fracture tests are then simulated using a finite element method that is incorporated with material viscoelasticity and cohesive zone fracture. Fracture properties are obtained locally at the notch tip by identifying two cohesive zone fracture parameters (cohesive strength and fracture energy) that result in a good agreement between test results and numerical simulations. The results clearly present significant rate-dependent fracture characteristics of bituminous paving mixtures at intermediate service temperatures. This study further demonstrates that fracture properties of viscoelastic materials need to be characterized at the local fracture process zone when they present ductile fracture behavior.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700