用户名: 密码: 验证码:
Thermal Counterflow in a Periodic Channel with Solid Boundaries
详细信息    查看全文
  • 作者:Andrew W. Baggaley (1)
    Jason Laurie (2)

    1. School of Mathematics and Statistics
    ; University of Glasgow ; Glasgow ; G12 8QW ; UK
    2. Department of Physics of Complex Systems
    ; Weizmann Institute of Science ; 76100 ; Rehovot ; Israel
  • 关键词:Superfluidity ; Quantized vortices ; Thermal counterflow ; Transition to turbulence
  • 刊名:Journal of Low Temperature Physics
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:178
  • 期:1-2
  • 页码:35-52
  • 全文大小:1,128 KB
  • 参考文献:1. P.G. Saffman, / Vortex Dynamics (Cambridge University Press, Cambridge, 1992)
    2. W.F. Vinen, Proc. R. Soc. A 240(1220), 114 (1957). doi:10.1098/rspa.1957.0071 CrossRef
    3. W.F. Vinen, Proc. R. Soc. A 240(1220), 128 (1957). doi:10.1098/rspa.1957.0072 CrossRef
    4. W.F. Vinen, Proc. R. Soc. A 242(1231), 493 (1957). doi:10.1098/rspa.1957.0191 CrossRef
    5. W.F. Vinen, Proc. R. Soc. A 243(1234), 400 (1958). doi:10.1098/rspa.1958.0007 CrossRef
    6. W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002). doi:10.1023/A:1019695418590 CrossRef
    7. L. Skrbek, K.R. Sreenivasan, Phys. Fluids 24(1), 011301 (2012). doi:10.1063/1.3678335 CrossRef
    8. L. Skrbek, A.V. Gordeev, F. Soukup, Phys. Rev. E 67, 047302 (2003). doi:10.1103/PhysRevE.67.047302 CrossRef
    9. W. Guo, S.B. Cahn, J.A. Nikkel, W.F. Vinen, D.N. McKinsey, Phys. Rev. Lett. 105, 045301 (2010). doi:10.1103/PhysRevLett.105.045301
    10. K.W. Schwarz, Phys. Rev. B 38(4), 2398 (1988) CrossRef
    11. C. Barenghi, L. Skrbek, J. Low Temp. Phys. 146(1鈥?), 5 (2007). doi:10.1007/s10909-006-9270-0 CrossRef
    12. H. Adachi, S. Fujiyama, M. Tsubota, Phys. Rev. B 81(10), 104511 (2010). doi:10.1103/PhysRevB.81.104511 CrossRef
    13. H. Adachi, M. Tsubota, Phys. Rev. B 83, 132503 (2011). doi:10.1103/PhysRevB.83.132503 CrossRef
    14. A.W. Baggaley, L.K. Sherwin, C.F. Barenghi, Y.A. Sergeev, Phys. Rev. B 86, 104501 (2012). doi:10.1103/PhysRevB.86.104501 CrossRef
    15. R.G.K.M. Aarts, A.T.A.M. de Waele, Phys. Rev. B 50, 10069 (1994). doi:10.1103/PhysRevB.50.10069 CrossRef
    16. L. Galantucci, C. Barenghi, M. Sciacca, M. Quadrio, P. Luchini, J. Low Temp. Phys. 162(3鈥?), 354 (2011). doi:10.1007/s10909-010-0266-4
    17. A.W. Baggaley, S. Laizet, Phys. Fluids 25, 115101 (2013) CrossRef
    18. K.W. Schwarz, Phys. Rev. B 31, 5782 (1985). doi:10.1103/PhysRevB.31.5782 CrossRef
    19. R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27(6), 1217 (1998) CrossRef
    20. D. Kivotides, C.F. Barenghi, D.C. Samuels, Science 290, 777 (2000) CrossRef
    21. J. Tough, in / Progress of Low Temperature Physics, vol. VIII, ed. by D. Brewer (North-Holland Publications, Amsterdam, 1982)
    22. W. Vinen, J. Low Temp. Phys. 175(1鈥?), 305 (2014). doi:10.1007/s10909-013-0911-9 CrossRef
    23. A.W. Baggaley, C.F. Barenghi, Phys. Rev. B 84, 020504 (2011). doi:10.1103/PhysRevB.84.020504 CrossRef
    24. A. Baggaley, J. Low Temp. Phys. 168(1鈥?), 18 (2012). doi:10.1007/s10909-012-0605-8 CrossRef
    25. R.D. Moser, J. Kim, N.N. Mansour, Phys. Fluids 11(4), 943 (1999) CrossRef
    26. C.F. Barenghi, R.J. Donnelly, W.F. Vinen, J. Low Temp. Phys. 52, 189 (1983) CrossRef
    27. S.A. Orszag, J. Fluid Mech. 50, 689 (1971) CrossRef
    28. S. Babuin, M. Stammeier, E. Varga, M. Rotter, L. Skrbek, Phys. Rev. B 86, 134515 (2012) CrossRef
    29. T.V. Chagovets, L. Skrbek, Phys. Rev. Lett. 100, 215302 (2008) CrossRef
    30. C. Barenghi, R. Donnelly, W. Vinen, / Quantized Vortex Dynamics and Superfluid Turbulence. Lecture Notes in Physics (Springer, Berlin Heidelberg, 2001) CrossRef
    31. R. Ostermeier, W. Glaberson, J. Low Temp. Phys. 21(1鈥?), 191 (1975). doi:10.1007/BF01141298
    32. M. Tsubota, C.F. Barenghi, T. Araki, A. Mitani, Phys. Rev. B 69, 134515 (2004). doi:10.1103/PhysRevB.69.134515 CrossRef
    33. D. Poole, H. Scoffield, C. Barenghi, D. Samuels, J. Low Temp. Phys. 132(1鈥?), 97 (2003) CrossRef
    34. C. Barenghi, D. Samuels, J. Low Temp. Phys. 136(5鈥?), 281 (2004) CrossRef
    35. V. Eltsov, R. de Graaf, R. Heikkinen, M. Krusius, J. Low Temp. Phys. 161(5鈥?), 474 (2010). doi:10.1007/s10909-010-0243-y CrossRef
    36. V.B. Eltsov, R. de Graaf, P.J. Heikkinen, J.J. Hosio, R. H盲nninen, M. Krusius, V.S. L鈥檝ov, Phys. Rev. Lett. 105, 125301 (2010). doi:10.1103/PhysRevLett.105.125301
    37. F. Charru, P. de Forcrand-Millard, / Hydrodynamic Instabilities. Cambridge Texts in Applied Mathematics (Cambridge University Press, New york, 2011) CrossRef
    38. W. Guo, D. McKinsey, A. Marakov, K. Thompson, G. Ihas, W. Vinen, J. Low Temp. Phys. 171(5鈥?), 497 (2013). doi:10.1007/s10909-012-0708-2 CrossRef
    39. L. Skrbek. Private communication (2013)
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Condensed Matter
    Characterization and Evaluation Materials
    Magnetism and Magnetic Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-7357
文摘
We perform numerical simulations of finite temperature quantum turbulence produced through thermal counterflow in superfluid \(^{4}\) He, using the vortex filament model. We investigate the effects of solid boundaries along one of the Cartesian directions, assuming a laminar normal fluid with a Poiseuille velocity profile, whilst varying the temperature and the normal fluid velocity. We analyze the distribution of the quantized vortices, reconnection rates, and quantized vorticity production as a function of the wall-normal direction. We find that the quantized vortex lines tend to concentrate close to the solid boundaries with their position depending only on temperature and not on the counterflow velocity. We offer an explanation of this phenomenon by considering the balance of two competing effects, namely the rate of turbulent diffusion of an isotropic tangle near the boundaries and the rate of quantized vorticity production at the center. Moreover, this yields the observed scaling of the position of the peak vortex line density with the mutual friction parameter. Finally, we provide evidence that upon the transition from laminar to turbulent normal fluid flow, there is a dramatic increase in the homogeneity of the tangle, which could be used as an indirect measure of the transition to turbulence in the normal fluid component for experiments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700