用户名: 密码: 验证码:
Heat release and UV–Vis radiation in non-premixed hydrogen–oxygen flames
详细信息    查看全文
  • 作者:Thomas Fiala ; Thomas Sattelmayer
  • 刊名:Experiments in Fluids
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:56
  • 期:7
  • 全文大小:1,815 KB
  • 参考文献:ANSYS (2011) ANSYS FLUENT Theory Guide. ANSYS, INC., release 14.0 edn
    Ayoola B, Balachandran R, Frank J, Mastorakos E, Kaminski C (2006) Spatially resolved heat release rate measurements in turbulent premixed flames. Combust Flame 144(1-):1-6. doi:10.-016/?j.?combustflame.-005.-6.-05 View Article
    Bedard MJ, Sardeshmukh SV, Fuller T, Anderson WE, Tanabe M (2014) Chemiluminescence as a diagnostic in studying combustion instability in a practical combustor. In: 50th AIAA/ASME/SAE/ASEE joint propulsion conference, American Institute of Aeronautics and Astronautics. doi:10.-514/-.-014-3660
    Burcat A, Ruscic B (2005) Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. Techinical report, ANL-05/20, Argonne National Laboratory
    Burrows MC (1965) Radiation processes related to oxygen–hydrogen combustion at high pressures. Symp Combust 10(1):207-15. doi:10.-016/?S0082-0784(65)80165-5 (tenth symposium (international) on combustion)
    Burrows MC, Povinelli LA (1962) Emission spectra from high-pressure hydrogen–oxygen combustion. Technical report, NASA-TN-D-1305, NASA Lewis Research Center
    Burrows MC, Razner R (1964) Relation of emitted ultraviolet radiation to combustion of hydrogen and oxygen at 20 atmospheres. Technical report, NASA-TN-D-2548, NASA Glenn Research Center
    Clark TP, Bittker DA (1954) A study of the radiation from laminar and turbulent open propane-air flames as a function of flame area, equivalence ratio, and fuel flow rate. Technical report, RM E54F29, NASA Lewis Flight Propulsion Laboratory
    Daguse T, Croonenbroek T, Rolon JC, Darabiha N, Soufiani A (1996) Study of radiative effects on laminar counterflow H2/O2N2 diffusion flames. Combust Flame 106(3):271-87. doi:10.-016/-010-2180(95)00251-0 View Article
    Diederichsen J, Wolfhard HG (1956) Spectrographic examination of gaseous flames at high pressure. Proc R Soc Lond A Math Phys Sci 236(1204):89-03. doi:10.-098/?rspa.-956.-114 View Article
    Fiala T (2015) Radiation from high pressure hydrogen–oxygen flames and its use in assessing rocket combustion instability. PhD thesis, Technische Universit?t München
    Fiala T, Sattelmayer T (2013a) Non-premixed counterflow flame simulations: scaling rules for fast batch simulations. In: Proceedings of the European combustion meeting, pp 1-1
    Fiala T, Sattelmayer T (2013b) A posteriori computation of OH* radiation from numerical simulations in rocket combustion chambers. In: 5th European conference for aeronautics and space sciences (EUCASS), Munich. doi:10.-3140/-.-.-852.-966
    Fiala T, Sattelmayer T (2014) Nonpremixed counterflow flames: scaling rules for batch simulations. J Combust. doi:10.-155/-014/-84372 MATH
    Fiala T, Kathan R, Sattelmayer T (2011) Effective stability analysis of liquid rocket combustion chambers: experimental investigation of damped admittances. In: Proceedings of the 62nd international astronautical congress, international astronautical federation, IAC11-C4.3.11. doi:10.-3140/-.-.-866.-243
    Fiala T, Nettinger M, Rieger F, Kumar A, Sattelmayer T (2014) Emission and absorption measurement in enclosed round jet flames. In: 16th international symposium on flow visualization, Okinawa, Japan, 1138. doi:10.-3140/-.-.-424.-609
    Gardiner WC, Morinaga K, Ripley DL, Takeyama T (1969) Shock-tube study of oh (sigma–pi) luminescence. Phys Fluids 12(5):I-120–I-124. doi:10.-063/-.-692590 View Article
    Gaydon AG, Wolfhard HG (1952) The spectrum-line reversal method of measuring flame temperature. Proc Phys Soc Sect A 65(1):19. doi:10.-088/-370-1298/-5/-/-03 View Article
    Goodwin DG, Moffat HK, Speth RL (2014) Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. http://?cantera.?org , version 2.2.0
    Grcar JF, Day MS, Bell JB (2003) Conditional and opposed reaction path diagrams for the analysis of fluid-chemistry interactions. Report LBNL-52164, Lawrence Berkeley National Laboratory
    Gr?ning S, Oschwald M, Sattelmayer T (2012) Selbst erregte tangentiale Moden in einer Raketenbrennkammer unter repr?sentativen Bedingungen. In: Proceedings 61. Deutscher Luft- und Raumfahrtkongress, Berlin, Deutschland
    Hardalupas Y, Orain M (2004) Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame. Combust Flame 139(3):188-07. doi:10.-016/?j.?combustflame.-004.-8.-03 View Article
    Hardalupas Y, Panoutsos C, Taylor A (2010) Spatial resolution of a chemiluminescence sensor for local heat-release rate and equivalence ratio measurements in a model gas turbine combustor. Exp Fluids 49(4):883-09. doi:10.-007/?s00348-010-0915-z View Article
    Hidaka Y, Takahashi S, Kawano H, Suga M, Gardiner WC (1982) Shock-tube measurement of the rate constant for excited hydroxyl(A2.SIGMA.+) formation in the hydrogen–oxygen reac
  • 作者单位:Thomas Fiala (1)
    Thomas Sattelmayer (1)

    1. Lehrstuhl für Thermodynamik, Technische Universit?t München, Boltzmannstr. 15, 85747, Garching, Germany
  • 刊物类别:Engineering
  • 刊物主题:Engineering Fluid Dynamics
    Fluids
    Industrial Chemistry and Chemical Engineering
    Measurement Science and Instrumentation
    Thermodynamics
    Theoretical and Applied Mechanics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1114
文摘
The relationship between the volumetric heat release rate and radiation of non-premixed hydrogen–oxygen flames at atmospheric and elevated pressure is investigated. Both the radiation of the excited hydroxyl radical (\({\hbox {OH}^*}\)) and the continuous blue radiation are considered. To physically interpret radiation and heat release, the phenomena are first analyzed within laminar flames following a hybrid approach: a pressurized jet flame experiment is set up to correctly measure the \({\hbox {OH}^*}\) and blue radiation. The heat release rate is obtained from a complementary CFD simulation. Radiation and heat release are clearly uncorrelated for changes in pressure. Spatially, radiation and heat release occur at separate locations. To further scrutinize the laminar flame structure, non-premixed counterflow flame simulations are performed. By considering statistical ensembles of flamelets, these findings are transferred onto turbulent flames. As before, no general direct proportionality between radiation and heat release rate is observed because of flame straining. A technique for correcting these effects is applied, and its potential is evaluated. The impact of self-absorption of \({\hbox {OH}^*}\) radiation at elevated pressures on its interpretation is discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700