用户名: 密码: 验证码:
Mannan specific family 35 carbohydrate-binding module (CtCBM35) of Clostridium thermocellum: structure analysis and ligand binding
详细信息    查看全文
  • 作者:Arabinda Ghosh (1)
    Anil Kumar Verma (1)
    Ana Sofia Luis (2)
    Joana Luis Armada Bras (2)
    Carlos Mendes Fontes (2)
    Arun Goyal (1)
  • 关键词:homology modeling ; affinity electrophoresis ; fluorescence spectra ; protein melting
  • 刊名:Biologia
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:69
  • 期:10
  • 页码:1271-1282
  • 全文大小:620 KB
  • 参考文献:1. Abbott D.W. & Boraston A.B. 2012. Quantitative approaches to the analysis of carbohydrate-binding module function. Methods Enzymol. 510: 211-31. CrossRef
    2. Ahmed S., Luis A.S., Brás J.L.A., Fontes C.M.G.A. & Goyal A. 2013. Functional and structural characterization of family 6 carbohydrate binding module ( / CtCBM6A) of / Clostridium thermocellumα-L-arabinofuranosidase. Biochemistry (Moscow) 78: 1272-279. CrossRef
    3. Bolam D.N., Xie H., Pell G., Hogg D., Galbraith G., Henrissat B. & Gilbert H.J. 2004. X4 modules represent a new family of carbohydrate-binding modules that display novel properties. J. Biol. Chem. 279: 22953-2963. CrossRef
    4. Bradford M.M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-54. CrossRef
    5. Belatik A., Hotchandani S., Carpentier R. & Tajmir-Riahi H.A. 2012. Locating the binding sites of Pb (ii) ion with human and bovine serum albumins. Plos One 7: e3672. CrossRef
    6. Boraston A.B., Bolam D.N., Gilbert, HJ. & Davies G.J. 2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382: 769-81. CrossRef
    7. Correia M.A., Abbott D.W., Gloster T.M., Fernandes V.O., Prates J.A., Montanier C., Dumon C., Williamson M.P., Tunnicliffe R.B., Liu Z., Flint J.E., Davies G.J., Henrissat B., Coutinho P.M., Fontes C.M.G.A. & Gilbert H.J. 2010. Signature active site architectures illuminate the molecular basis for ligand specificity in family 35 carbohydrate binding module. Biochemistry 49: 6193-205. CrossRef
    8. Couturier M., Roussel A., Rosengren A., Leone P., St?lbrand H. & Berrin J.G. 2013. Structural and biochemical analyses of glycoside hydrolase families 5 and 26 / β-(1,4)-mannanases from / Podospora anserina reveal differences upon mannooligosaccharide catalysis. J. Biol. Chem. 288: 14624-4635. CrossRef
    9. Dvortsov I.A., Lunina N.A., Chekanovskaya L.A., Schwarz W.H., Zverlov V.V. & Velikodvorskaya G.A. 2009. Carbohydratebinding properties of a separately folding protein module from / β-1,3-glucanase Lic16A of / Clostridium thermocellum. Microbiology 155: 2442-449. CrossRef
    10. Fiser A., Do R.K. & Sali A. 2000. Modeling of loops in protein structures. Protein Sci. 9: 1753-773. CrossRef
    11. Ghosh A., Luís A.S., Brás J.L.A., Pathaw N., Chrungoo N.K., Fontes C.M.G.A. & Goyal A. 2013. Deciphering ligand specificity of a / Clostridium thermocellum family 35 carbohydrate binding module (CtCBM35) for gluco- and galacto-substituted mannans and its calcium induced stability. Plos One 8: e80415. CrossRef
    12. Gilkes N.R., Eric J.S., Henrissat B., Tekant B., Miller R.C. Jr., Warren R.A. & Kilburn D.G. 1992. The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J. Biol. Chem. 267: 6743-749.
    13. Gilbert H.J., Knox J.P & Boraston A.B. 2013. Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate binding modules. Curr. Opin. Struct. Biol. 23: 669-77.
文摘
The three-dimensional model of the CtCBM35 (Cthe 2811), i.e. the family 35 carbohydrate binding module (CBM) from the Clostridium thermocellum family 26 glycoside hydrolase (GH) β-mannanase, generated by Modeller9v8 displayed predominance of β-sheets arranged as β-sandwich fold. Multiple sequence alignment of CtCBM35 with other CBM35s showed a conserved signature sequence motif Trp-Gly-Tyr, which is probably a specific determinant for mannan binding. Cloned CtCBM35 from Clostridium thermocellum ATCC 27405 was a homogenous, soluble 16 kDa protein. Ligand binding analysis of CtCBM35 by affinity electrophoresis displayed higher binding affinity against konjac glucomannan (K a = 2.5 × 105 M?) than carob galactomannan (K a = 1.4 × 105 M?). The presence of Ca2+ ions imparted slightly higher binding affinity of CtCBM35 against carob galactomannan and konjac glucomannan than without Ca2+ ion additive. However, CtCBM35 exhibited a low ligand-binding affinity K a = 2.5 × 10? M? with insoluble ivory nut mannan. Ligand binding study by fluorescence spectroscopy showed K a against konjac glucomannan and carob galactomannan, 2.4 × 105 M? and 1.44 × 105 M?, and ΔG of binding ?7.0 and ?5.0 kJ/mol, respectively, substantiating the findings of affinity electrophoresis. Ca2+ ions escalated the thermostability of CtCBM35 and its melting temperature was shifted to 70°C from initial 55°C. Therefore thermostable CtCBM35 targets more β-(1,4)-manno-configured ligands from plant cell wall hemicellulosic reservoir. Thus a non-catalytic CtCBM35 of multienzyme cellulosomal enzymes may gain interest in the biofuel and food industry in the form of released sugars by targeting plant cell wall polysaccharides.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700