用户名: 密码: 验证码:
Supramolecular Adducts of Cucurbit[7]uril and Amino Acids in the Gas Phase
详细信息    查看全文
  • 作者:Ekaterina Kovalenko ; Marta Vilaseca…
  • 关键词:Supramolecular chemistry ; Gas ; phase studies ; Cucurbituril ; Amino acid
  • 刊名:Journal of The American Society for Mass Spectrometry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:27
  • 期:2
  • 页码:265-276
  • 全文大小:1,083 KB
  • 参考文献:1.Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n] uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005)CrossRef
    2.Kim, K., Selvapalam, N., Ko, Y.H., Park, K.M., Kim, D., Kim, J.: Functionalized cucurbiturils and their applications. Chem. Soc. Rev. 36, 267–279 (2007)CrossRef
    3.Isaacs, L.: Cucurbit[n]urils: from mechanism to structure and function. Chem. Commun. 6, 619–629 (2009)
    4.Masson, E., Ling, X.X., Joseph, R., Kyeremeh-Mensah, L., Lu, X.Y.: Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213–1247 (2012)CrossRef
    5.Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015)CrossRef
    6.Rajgariah, P., Urbach, A.R.: Scope of amino acid recognition by cucurbit[8]uril. J. Incl. Phenom. Macrocycl. Chem. 62, 251–254 (2008)CrossRef
    7.Urbach, A.R., Ramalingam, V.: Molecular Recognition of Amino Acids, Peptides, and Proteins by Cucurbit[n] uril Receptors. Isr. J. Chem. 51, 664–678 (2011)CrossRef
    8.Buschmann, H.J., Jansen, K., Schollmeyer, E.: The formation of cucurbituril complexes with amino acids and amino alcohols in aqueous formic acid studied by calorimetric titrations. Thermochim. Acta 317, 95–98 (1998)CrossRef
    9.Bailey, D.M., Hennig, A., Uzunova, V.D., Nau, W.M.: Supramolecular tandem enzyme assays for multiparameter sensor arrays and enantiomeric excess determination of amino acids. Chem. Eur. J. 14, 6069–6077 (2008)CrossRef
    10.Lee, J.W., Lee, H.H.L., Ko, Y.K., Kim, K., Kim, H.I.: Deciphering the specific high-affinity binding of cucurbit[7]uril to amino acids in water. J. Phys. Chem. B 119, 4628–4636 (2015)CrossRef
    11.Cong, H., Tao, L.L., Yu, Y.H., Yang, F., Du, Y., Xue, S.F., Tao, Z.: Molecular recognition of aminoacid by cucurbiturils. Acta Chim. Sin. 64, 989–996 (2006)
    12.Cong, H., Tao, L.L., Yu, Y.H., Yang, F., Du, Y., Tao, Z., Xue, S.F.: Formation of host–guest complexes of amino acids and cucurbit[7] uril. Asian J. Chem. 19, 961–964 (2007)
    13.Hennig, A., Bakirci, H., Nau, W.M.: Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes. Nat. Methods 4, 629–632 (2007)CrossRef
    14.Liu, S.M., Ruspic, C., Mukhopadhyay, P., Chakrabarti, S., Zavalij, P.Y., Isaacs, L.: The cucurbit[n]uril family: prime components for self-sorting systems. J. Am. Chem. Soc. 127, 15959–15967 (2005)CrossRef
    15.Gamal-Eldin, M.A., Macartney, D.H.: Selective molecular recognition of methylated lysines and arginines by cucurbit[6]uril and cucurbit[7]uril in aqueous solution. Org. Biomol. Chem. 11, 488–495 (2013)CrossRef
    16.Kovalenko, E.A., Mainichev, D.A.: Supramolecular system of aminoacids and cucurbit[7]uril: NMR studies in solution. Appl. Magn. Reson. 46, 281–293 (2015)CrossRef
    17.Kovalenko, E.A., Mainichev, D.A., Masliy, A.N., Kuznetsov, A.M.: Supramolecular chemistry of macrocyclic cavitand cucurbit[7]uril with isoleucine. Russ. Chem. Bull. 8, 1906–1911 (2015)
    18.Thuéry, P.: L-cysteine as a chiral linker in lanthanide-cucurbit[6]uril one-dimensional assemblies. Inorg. Chem. 50, 10558–10560 (2011)CrossRef
    19.Danylyuk, O., Fedin, V.P.: Solid-state supramolecular assemblies of tryptophan and tryptamine with cucurbit[6]uril. Cryst. Growth Des. 12, 550–555 (2012)CrossRef
    20.Biedermann, F., Uzunova, V.D., Scherman, O.A., Nau, W.M., De Simone, A.: Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 134, 15318–15323 (2012)CrossRef
    21.Biedermann, F., Nau, W.M., Schneider, H.-J.: The hydrophobic effect revisited—studies with supramolecular complexes imply high-energy water as a noncovalent driving force. Angew. Chem. Int. Ed. 53, 11158–11171 (2014)CrossRef
    22.Jeon, W.S., Moon, K., Park, S.H., Chun, H., Ko, Y.H., Lee, J.Y., Lee, E.S., Samal, S., Selvapalam, N., Rekharsky, M.V., Sindelar, V., Sobransingh, D., Inoue, Y., Kaifer, A.E., Kim, K.: Complexation of ferrocene derivatives by the cucurbit[7]uril host: a comparative study of the cucurbituril and cyclodextrin host families. J. Am. Chem. Soc. 127, 12984–12989 (2005)CrossRef
    23.Logsdon, L.A., Schardon, C.L., Ramalingam, V., Kwee, S.K., Urbach, A.R.: Nanomolar binding of peptides containing noncanonical amino acids by a synthetic receptor. J. Am. Chem. Soc. 133, 17087–17092 (2011)CrossRef
    24.Chinai, J.M., Taylor, A.B., Ryno, L.M., Hargreaves, N.D., Morris, C.A., Hart, P.J., Urbach, A.R.: Molecular recognition of insulin by a synthetic receptor. J. Am. Chem. Soc. 133, 8810–8813 (2011)CrossRef
    25.Saleh, N., Koner, A.L., Nau, W.M.: Activation and stabilization of drugs by supramolecular pK(a) shifts: drug-delivery applications tailored for cucurbiturils. Angew. Chem. Int. Ed. 47, 5398–5401 (2008)CrossRef
    26.Kim, C., Agasti, S.S., Zhu, Z.J., Isaacs, L., Rotello, V.M.: Recognition-mediated activation of therapeutic gold nanoparticles inside living cells. Nat. Chem. 2, 962–966 (2010)CrossRef
    27.Wyman, I.W., Macartney, D.H.: Host–guest complexations of local anaesthetics by cucurbit[7]uril in aqueous solution. Org. Biomol. Chem. 8, 247–252 (2010)CrossRef
    28.Koner, A.L., Ghosh, I., Saleh, N., Nau, W.M.: Supramolecular encapsulation of benzimidazole-derived drugs by cucurbit[7]uril. Can. J. Chem. 89, 139–147 (2011)CrossRef
    29.Hennig, A., Ghale, G., Nau, W.M.: Effects of cucurbit[7]uril on enzymatic activity. Chem. Commun. 1614–1616 (2007)
    30.Ghosh, S., Isaacs, L.: Biological catalysis regulated by cucurbit[7]uril molecular containers. J. Am. Chem. Soc. 132, 4445–4454 (2010)CrossRef
    31.Lee, D.W., Park, K.M., Banerjee, M., Ha, S.H., Lee, T., Suh, K., Paul, S., Jung, H., Kim, J., Selvapalam, N., Ryu, S.H., Kim, K.: Supramolecular fishing for plasma membrane proteins using an ultrastable synthetic host-guest binding pair. Nat. Chem. 3, 154–159 (2011)CrossRef
    32.Nau, W.M., Ghale, G., Hennig, A., Bakirci, H., Bailey, D.M.: Substrate-selective supramolecular tandem assays: monitoring enzyme inhibition of arginase and diamine oxidase by fluorescent dye displacement from calixarene and cucurbituril macrocycles. J. Am. Chem. Soc. 131, 11558–11570 (2009)CrossRef
    33.Florea, M., Nau, W.M.: Implementation of anion-receptor macrocycles in supramolecular tandem assays for enzymes involving nucleotides as substrates, products, and cofactors. Org. Biomol. Chem. 8, 1033–1039 (2010)CrossRef
    34.Lebrilla, C.B.: The gas-phase chemistry of cyclodextrin inclusion complexes. Acc. Chem. Res. 34, 653–661 (2001)CrossRef
    35.Grigorean, G., Ramirez, J., Ahn, S.H., Lebrilla, C.B.: A mass spectrometry method for the determination of enantiomeric excess in mixtures of d, l-amino acids. Anal. Chem. 72, 4275–4281 (2000)CrossRef
    36.Bich, C., Baer, S., Jecklin, M.C., Zenobi, R.: Probing the hydrophobic effect of noncovalent complexes by mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 286–289 (2010)CrossRef
    37.Daniel, J.M., Friess, S.D., Rajagopalan, S., Wendt, S., Zenobi, R.: Quantitative determination of noncovalent binding interactions using soft ionization mass spectrometry. Int. J. Mass Spectrom. 216, 1–27 (2002)CrossRef
    38.Mortensen, D.N., Dearden, D.V.: Influence of charge repulsion on binding strengths: experimental and computational characterization of mixed alkali metal complexes of decamethylcucurbit[5]uril in the gas phase. Chem. Commun. 47, 6081–6083 (2011)CrossRef
    39.Osaka, I., Kondou, M., Selvapalam, N., Samal, S., Kim, K., Rekharsky, M.V., Inoue, Y., Arakawa, R.: Characterization of host–guest complexes of cucurbit[n]uril (n = 6, 7) by electrospray ionization mass spectrometry. J. Mass Spectrom. 41, 202–207 (2006)CrossRef
    40.Yang, F., Dearden, D.V.: Guanidinium-capped cucurbit[7]uril molecular cages in the gas phase. Supramol. Chem. 23, 53–58 (2011)CrossRef
    41.Zhang, H.Z., Paulsen, E.S., Walker, K.A., Krakowiak, K.E., Dearden, D.V.: Cucurbit[6]uril pseudorotaxanes: distinctive gas-phase dissociation and reactivity. J. Am. Chem. Soc. 125, 9284–9285 (2003)CrossRef
    42.Zhang, H., Ferrell, T.A., Asplund, M.C., Dearden, D.V.: Molecular beads on a charged molecular string: alpha, omega-alkyldiammonium complexes of cucurbit[6]uril in the gas phase. Int. J. Mass Spectrom. 265, 187–196 (2007)CrossRef
    43.Lee, S.J.C., Lee, J.W., Lee, H.H., Seo, J., Noh, D.H., Ko, Y.H., Kim, K., Kim, H.I.: Host–guest chemistry from solution to the gas phase: an essential role of direct interaction with water for high-affinity binding of cucurbit[n]urils. J. Phys. Chem. B 117, 8855–8864 (2013)CrossRef
    44.Yang, F., Jones, C.A., Selvapalam, N., Ko, Y.H., Kim, K., Dearden, D.V.: Binding of alpha, omega-alkyldiammonium ions by cucurbit[n]urils in the gas phase. Supramol. Chem. 26, 684–691 (2014)CrossRef
    45.Dearden, D.V., Ferrell, T.A., Asplund, M.C., Zilch, L.W., Julian, R.R., Jarrold, M.F.: One ring to bind them all: shape-selective complexation of phenylenediamine isomers with cucurbit[6]uril in the gas phase. J. Phys. Chem. A 113, 989–997 (2009)CrossRef
    46.Yang, F., Dearden, D.V.: Gas phase cucurbit[n]uril chemistry. Isr. J. Chem. 51, 551–558 (2011)CrossRef
    47.Cernochova, J., Branna, P., Rouchal, M., Kulhanek, P., Kuritka, I., Vicha, R.: Determination of intrinsic binding modes by mass spectrometry: gas-phase behavior of adamantylated bisimidazolium guests complexed to cucurbiturils. Chem. Eur. J. 18, 13633–13637 (2012)CrossRef
    48.Mitkina, T., Fedin, V., Llusar, R., Sorribes, I., Vicent, C.: Distinctive unimolecular gas-phase reactivity of [M(en)2]2+ (M = Ni, Cu) dications and their inclusion complexes with the macrocyclic cavitand cucurbit[8]uril. J. Am. Soc. Mass Spectrom. 18, 1863–1872 (2007)CrossRef
    49.Heo, S.W., Choi, T.S., Park, K.M., Ko, Y.H., Kim, S.B., Kim, K., Kim, H.I.: Host–guest chemistry in the gas phase: selected fragmentations of CB6-peptide complexes at lysine residues and its utility to probe the structures of small proteins. Anal. Chem. 83, 7916–7923 (2011)CrossRef
    50.Choi, T.S., Ko, J.Y., Heo, S.W., Ko, Y.H., Kim, K., Kim, H.I.: Unusual complex formation and chemical reaction of haloacetate anion on the exterior surface of cucurbit[6]uril in the gas phase. J. Am. Soc. Mass Spectrom. 23, 1786–1793 (2012)CrossRef
    51.Czar, M.F., Jockusch, R.A.: Understanding photophysical effects of cucurbituril encapsulation: a model study with acridine orange in the gas phase. Chem. Phys. Chem. 14, 1138–1148 (2013)
    52.Noh, D.H., Lee, S.J.C., Lee, J.W., Kim, H.I.: Host–guest chemistry in the gas phase: complex formation of cucurbit[6]uril with proton-bound water dimer. J. Am. Soc. Mass Spectrom. 25, 410–421 (2014)CrossRef
    53.Lee, T.-C., Kalenius, E., Lazar, A.I., Assaf, K.I., Kuhnert, N., Grun, C.H., Janis, J., Scherman, O.A., Nau, W.M.: Chemistry inside molecular containers in the gas phase. Nat. Chem. 5, 376–382 (2013)CrossRef
    54.Zhang, H., Grabenauer, M., Bowers, M.T., Dearden, D.V.: Supramolecular modification of ion chemistry: modulation of peptide charge state and dissociation behavior through complexation with cucurbit[n]uril (n = 5, 6) or alpha-cyclodextrin. J. Phys. Chem. A 113, 1508–1517 (2009)CrossRef
    55.Heath, B.L., Jockusch, R.A.: Ligand migration in the gaseous insulin-CB7 complex-A cautionary tale about the use of ECD-MS for ligand binding site determination. J. Am. Soc. Mass Spectrom. 23, 1911–1920 (2012)CrossRef
    56.Lee, J.W., Heo, S.W., Lee, S.J.C., Ko, J.Y., Kim, H., Kim, H.I.: Probing conformational changes of ubiquitin by host–guest chemistry using electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 24, 21–29 (2013)CrossRef
    57.Day, A., Arnold, A.P., Blanch, R.J., Snushall, B.: Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem. 66, 8094–8100 (2001)CrossRef
    58.Vicent, C., Feliz, M., Llusar, R.: Intrinsic gas-phase reactivity toward methanol of trinuclear tungsten W3S4 complexes bearing W−X (X = Br, OH) groups. J. Phys. Chem. A 112, 12550–12558 (2008)CrossRef
    59.Llusar, R., Sorribes, I., Vicent, C.: Electrospray ionization based methods for the generation of polynuclear oxo- and hydroxo group 6 anions in the gas phase. J. Clust. Sci. 20, 177–192 (2009)CrossRef
    60.Laikov, D.N.: Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. Chem. Phys. Lett. 281, 151–156 (1997)CrossRef
    61.Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRef
    62.Schafer, A., Horn, H., Ahlrichs, R.: Fully optimized contracted gaussin-basis sets for atoms Li to Kr. J. Chem. Phys. 97, 2571–2577 (1992)CrossRef
    63.Bakovets, V.V., Masliy, A.N., Kuznetsov, A.M.: Formation thermodynamics of cucurbit[6]uril macrocycle molecules: a theory study. J. Phys. Chem. B 112, 12010–12013 (2008)CrossRef
    64.Masliy, A.N., Grishaeva, T.N., Kuznetsov, A.M., Bakovets, V.V.: Quantum chemical investigation of structural and thermodynamic peculiarities of the formation of cucurbit[n]urils. J. Struct. Chem. 48, 552–557 (2007)CrossRef
    65.Maslii, A.N., Grishaeva, T.N., Kuznetsov, A.M., Bakovets, V.V.: Quantum-chemical study of structurization of water in the cavity of cucurbit[6]uril. J. Struct. Chem. 50, 391–396 (2009)CrossRef
    66.Grishaeva, T.N., Maslii, A.N., Kuznetsov, A.M., Bakovets, V.V.: Quantum-chemical study of the formation mechanism of cucurbit[n]uril nanocavitands. Russ. J. Inorg. Chem. 55, 1594–1599 (2010)CrossRef
    67.Gabelica, V., Galic, N., De Pauw, E.: On the specificity of cyclodextrin complexes detected by electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 13, 946–953 (2002)CrossRef
    68.Rekharsky, M.V., Yamamura, H., Inoue, C., Kawai, M., Osaka, I., Arakawa, R., Shiba, K., Sato, A., Ko, Y.H., Selvapalam, N., Kim, K., Inoue, Y.: Chiral recognition in cucurbituril cavities. J. Am. Chem. Soc. 128, 14871–14880 (2006)CrossRef
    69.Yi, J.M., Zhang, Y.Q., Cong, H., Xue, S.F., Tao, Z.: Crystal structures of four host-guest inclusion complexes of α, α´, δ, δ´-tetramethylcucurbit[6]uril and cucurbit[8]uril with some L-amino acids. J. Mol. Struct. 933, 112–117 (2009)CrossRef
    70.Hunter, E.P.L., Lias, S.G.: Evaluated gas phase basicities and proton affinities of molecules: an update. Phys. Chem. Ref. Data 27, 413–656 (1998)CrossRef
    71.Bleiholde, C., Suhai, S., Paizs, B.: Revising the proton affinity scale of the naturally occurring α-amino acids. J. Am. Soc. Mass Spectrom. 17, 1275–1281 (2006)CrossRef
    72.David, W.M., Brodbelt, J.S.: Threshold dissociation energies of protonated amine/polyether complexes in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 14, 383–392 (2003)CrossRef
    73.Crowe, M.C., Brodbelt, J.S.: Evaluation of noncovalent interactions between peptides and polyether compounds via energy-variable collisionally activated dissociation. J. Am. Soc. Mass Spectrom. 14, 1148–1157 (2003)CrossRef
    74.Ghosh, I., Nau, W.M.: The strategic use of supramolecular pK(a) shifts to enhance the bioavailability of drugs. Adv. Drug Deliv. Rev. 64, 764–783 (2012)CrossRef
    75.Barooah, N., Mohanty, J., Pal, H., Bhasikuttan, A.C.: Cucurbituril-induced supramolecular pK(a) shift in fluorescent dyes and its prospective applications. Proc. Natl. Acad. Sci. India Sect. A 84, 1–17 (2014)CrossRef
    76.Gronert, S.: Determining the gas-phase properties and reactivities of multiply charged ions. J. Mass Spectrom. 34, 787–796 (1999)CrossRef
    77.Penn, S.G., He, F., Green, M.K., Lebrilla, C.B.: The use of heated capillary dissociation and collision-induced dissociation to determine the strength of noncovalent bonding interactions in gas-phase peptide-cyclodextrin complexes. J. Am. Soc. Mass Spectrom. 8, 244–252 (1997)CrossRef
    78.Penn, S.G., He, F., Lebrilla, C.B.: Peptides complexed to cydodextrin fragment rather than dissociate when subjected to blackbody infrared radiation. J. Phys. Chem. B 102, 9119–9126 (1998)CrossRef
    79.Garcia, B., Ramirez, J., Wong, S., Lebrilla, C.B.: Thermal dissociation of protonated cyclodextrin-amino acid complexes in the gas phase. Int. J. Mass Spectrom. 210/211, 215–222 (2001)
  • 作者单位:Ekaterina Kovalenko (1)
    Marta Vilaseca (2)
    Mireia Díaz-Lobo (2)
    A. N. Masliy (3)
    Cristian Vicent (4)
    Vladimir P. Fedin (1)

    1. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Pr. Lavrentieva 3, 630090, Novosibirsk, Russia
    2. Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
    3. Kazan National Research Technological University, 420015, K.Marx St 68, Kazan, Russia
    4. Serveis Centrals d’Instrumentació Científica, Universitat Jaume I, Avda. Sos Baynat s/n, E-12071, Castelló, Spain
  • 刊物主题:Analytical Chemistry; Biotechnology; Organic Chemistry; Proteomics; Bioinformatics;
  • 出版者:Springer US
  • ISSN:1879-1123
文摘
The complexation of the macrocyclic cavitand cucurbit[7]uril (Q7) with a series of amino acids (AA) with different side chains (Asp, Asn, Gln, Ser, Ala, Val, and Ile) is investigated by ESI-MS techniques. The 1:1 [Q7 + AA + 2H]2+ adducts are observed as the base peak when equimolar Q7:AA solutions are electrosprayed, whereas the 1:2 [Q7 + 2AA + 2H]2+ dications are dominant when an excess of the amino acid is used. A combination of ion mobility mass spectrometry (IM-MS) and DFT calculations of the 1:1 [Q7 + AA + 2H]2+ (AA = Tyr, Val, and Ser) adducts is also reported and proven to be unsuccessful at discriminating between exclusion or inclusion-type conformations in the gas phase. Collision induced dissociation (CID) revealed that the preferred dissociation pathways of the 1:1 [Q7 + AA + 2H]2+ dications are strongly influenced by the identity of the amino acid side chain, whereas ion molecule reactions towards N-butylmethylamine displayed a common reactivity pattern comprising AA displacement. Special emphasis is given on the differences between the gas-phase behavior of the supramolecular adducts with amino acids (AA = Asp, Asn, Gln, Ser, Ala, Val, and Ile) and those featuring basic (Lys and Arg) and aromatic (Tyr and Phe) side chains.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700