用户名: 密码: 验证码:
Laterality effects in the recognition of depth-rotated novel objects
详细信息    查看全文
  • 作者:Kim M. Curby (1)
    William G. Hayward (2)
    Isabel Gauthier (1)
  • 刊名:Cognitive, Affective, & Behavioral Neuroscience
  • 出版年:2004
  • 出版时间:March 2004
  • 年:2004
  • 卷:4
  • 期:1
  • 页码:100-111
  • 全文大小:467KB
  • 参考文献:1. Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. / Psychological Review, 94, 115鈥?47. CrossRef
    2. Biederman, I. , & Bar, M. (1999). One-shot viewpoint invariance in matching novel objects. / Vision Research, 39, 2885鈥?899. CrossRef
    3. Biederman, I. , & Cooper, E. E. (1991a). Evidence for complete translational and reflectional invariance in visual object priming. / Perception, 20, 585鈥?93. CrossRef
    4. Biederman, I. , & Cooper, E. E. (1991b). Object recognition and laterality: Null effects. / Neuropsychologia, 29, 695鈥?02. CrossRef
    5. Biederman, I. , & Cooper, E. E. (1992). Size invariance in visual object priming. / Journal of Experimental Psychology: Human Perception & Performance, 18, 121鈥?33. CrossRef
    6. Biederman, I. , & Gerhardstein, P. C. (1993). Recognizing depth-rotated objects: Evidence and conditions for three-dimensional viewpoint invariance. / Journal of Experimental Psychology: Human Perception & Performance, 19, 1162鈥?182. CrossRef
    7. Bookheimer, S. (2002). Functional MRI of language: New approaches to understanding the cortical organization of semantic processing. / Annual Review of Neuroscience, 25, 151鈥?88. CrossRef
    8. Burgund, E. D. , & Marsolek, C. J. (1997). Letter-case-specific priming in the right cerebral hemisphere with a form-specific perceptual identification task. / Brain & Cognition, 35, 239鈥?58. CrossRef
    9. Burgund, E. D. , & Marsolek, C. J. (2000). Viewpoint-invariant and viewpoint-dependent object recognition in dissociable neural subsystems. / Psychonomic Bulletin & Review, 7, 480鈥?89. CrossRef
    10. Cabeza, R. , & Nyberg, L. (2000). Imaging cognition: II. An empirical review of 275 PET and fMRI studies. / Journal of Cognitive Neuroscience, 12, 1鈥?7. CrossRef
    11. Carpenter, R. H. S. (1981). Oculomotor procrastination. In D. F. Fisher, R. A. Monty, & J. W. Senders (Eds.), / Eye movements: Cognition and visual perception. Hillsdale, NJ: Erlbaum.
    12. Cooper, E. E., Biederman, I. , & Hummel, J. E. (1992). Metric invariance in object recognition: A review and further evidence. / Canadian Journal of Psychology, 46, 191鈥?14. CrossRef
    13. Corballis, M. C., Zbrodoff, N. J., Shetzer, L. I. , & Butler, P. B. (1984). Decisions about identity and orientation of rotated letters and digits. / Memory & Cognition, 6, 98鈥?07. CrossRef
    14. Davidoff, J. , & Warrington, E. K. (1999). Apperceptive agnosia: A deficit of perceptual categorisation of objects. In G. W. Humphreys (Ed.), / Case studies in the neuropsychology of vision (pp. 59鈥?9). Hove, U.K.: Psychology Press.
    15. Demb, J. B., Desmond, J. E., Wagner, A. D., Vaidya, C. J., Glover, G. H. , & Gabrieli, J. D. E. (1995). Semantic encoding and retrieval in the left inferior prefrontal cortex: A functional MRI study of task difficulty and process specificity. / Journal of Neuroscience, 15, 5870鈥?878.
    16. Farah, M. J. (1992). Is an object an object an object? Cognitive and neuropsychological investigations of domain-specificity in visual object recognition. / Current Directions in Psychological Science, 1, 164鈥?69. CrossRef
    17. Funnell, M. G., Corballis, P. M. , & Gazzaniga, M. S. (1999). A deficit in perceptual matching in the left hemisphere of a callosotomy patient. / Neuropsychologia, 37, 1143鈥?154. CrossRef
    18. Gauthier, I., James, T., Curby, K. M. , & Tarr, M. J. (2003). The influence of conceptual knowledge on visual discrimination. / Cognitive Neuropsychology, 20, 507鈥?23. CrossRef
    19. Hayward, W. G. (1998). Effects of outline shape in object recognition. / Journal of Experimental Psychology: Human Perception & Performance, 24, 427鈥?40. CrossRef
    20. Hayward, W. G. , & Tarr, M. J. (1997). Testing conditions for viewpoint invariance in object recognition. / Journal of Experimental Psychology: Human Perception & Performance, 23, 1511鈥?521. CrossRef
    21. Hayward, W. G. , & Williams, P. (2000). Viewpoint dependence and object discriminability. / Psychological Science, 11, 7鈥?2. CrossRef
    22. Hellige, J. B. (2001). / Hemispheric asymmetry: What鈥檚 right and what鈥檚 left. Cambridge, MA: Harvard University Press.
    23. Hummel, J. E. , & Stankiewicz, B. J. (1998). Two roles for attention in shape perception: A structural description model of visual scrutiny. / Visual Cognition, 5, 49鈥?9. CrossRef
    24. James, T. W. , & Gauthier, I. (2004). Brain areas engaged during visual judgments by involuntary access to novel semantic information. / Vision Research, 44, 429鈥?39. CrossRef
    25. Kann, J. (1950). A translation of Broca鈥檚 original article on the location of the speech center [Remarques sur le si猫ge de la facult茅 du langage articul猫, suivies d鈥檜ne observation d鈥檃ph茅mie]. / Journal of Speech & Hearing Disorders, 15, 16鈥?0. (Original work published 1861)
    26. Marsolek, C. J. (1995). Abstract visual-form representations in the left cerebral hemisphere. / Journal of Experimental Psychology: Human Perception & Performance, 21, 375鈥?86. CrossRef
    27. Marsolek, C. J. (1999). Dissociable neural subsystems underlie abstract and specific object recognition. / Psychological Science, 10, 111鈥?18. CrossRef
    28. Marsolek, C. J., Kosslyn, S. M. , & Squire, L. R. (1992). Form-specific visual priming in the right hemisphere. / Journal of Experimental Psychology: Learning, Memory, & Cognition, 18, 492鈥?08. CrossRef
    29. Marsolek, C. J., Schacter, D. L. , & Nicholas, C. D. .(1996). Formspecif ic visual priming for new associations in the right cerebral hemisphere. / Memory & Cognition, 24, 539鈥?56. CrossRef
    30. Marsolek, C. J., Squire, L. R., Kosslyn, S. M. , & Lulenski, M. E. (1994). Form-specific explicit and implicit memory in the right cerebral hemisphere. / Neuropsychology, 8, 588鈥?97. CrossRef
    31. Ojemann, G. A. (1983). Brain organization for language from the perspective of electrical stimulation mapping. / Behavioral & Brain Sciences, 6, 189鈥?30. CrossRef
    32. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. / Neuropsychologia, 9, 97鈥?13. CrossRef
    33. Poggio, T. , & Edelman, S. (1990). A network that learns to recognize three-dimensional objects. / Nature, 343, 263鈥?66. CrossRef
    34. Riesenhuber, M. , & Poggio, T. (1999). Hierarchical models of object recognition in cortex. / Nature Neuroscience, 2, 1019鈥?025. CrossRef
    35. Shepard, R. N. (1967). Recognition memory for words, sentences, and pictures. / Journal of Verbal Learning & Verbal Behavior, 6, 156鈥?63. CrossRef
    36. Srinivas, K. (1995). Representation of rotated objects in explicit and implicit memory. / Journal of Experimental Psychology: Learning, Memory, & Cognition, 21, 1019鈥?036. CrossRef
    37. Tarr, M. J. (1995). Rotating objects to recognize them: A case study on the role of viewpoint dependency in the recognition of three-dimensional objects. / Psychonomic Bulletin & Review, 2, 55鈥?2. CrossRef
    38. Tarr, M. J. , & B眉lthoff, H. H. (1995). Is human object recognition better described by geon structural descriptions or by multiple views? Comments on Biederman and Gerhardstein (1993). / Journal of Experimental Psychology: Human Perception & Performance, 21, 1494鈥?505. CrossRef
    39. Tarr, M. J. , & Gauthier, I. (1998). Do viewpoint-dependent mechanisms generalize across members of a class? / Cognition, 67, 73鈥?10. CrossRef
    40. Tarr, M. J. , & Pinker, S. (1989). Mental rotation and orientationdependence in shape recognition. / Cognitive Psychology, 21, 233鈥?82. CrossRef
    41. Tarr, M. J. , & Pinker, S. (1990). When does human object recognition use a viewer-centered reference frame? / Psychological Science, 1, 253鈥?56. CrossRef
    42. Tarr, M. J., Williams, P., Hayward, W. G. , & Gauthier, I. (1998). Three-dimensional object recognition is viewpoint dependent. / Nature Neuroscience, 1, 275鈥?77. CrossRef
    43. Vandenberghe, R., Price, C., Wise, R., Josephs, O. , & Frackowiak, R. S. J. (1996). Functional anatomy of a common semantic system for words and pictures. / Nature, 383, 254鈥?56. CrossRef
    44. Vuilleumier, P., Henson, R. N., Driver, J. , & Dolan, R. J. (2002). Multiple levels of visual object constancy revealed by event-related fMRI of repetition priming. / Nature Neuroscience, 5, 491鈥?99. CrossRef
    45. Wagner, A. D., Desmond, J. E., Demb, J. B., Glover, G. H. , & Gabrieli, J. D. E. (1997). Semantic repetition priming for verbal and pictorial knowledge: A functional MRI study of left inferior prefrontal cortex. / Journal of Cognitive Neuroscience, 9, 714鈥?26. CrossRef
    46. Warrington, E. K. , & James, M. (1991). A new test of object decision: 2D silhouettes featuring a minimal view. / Cortex, 27, 377鈥?83.
    47. Warrington, E. K. , & Taylor, A. M. (1978). Two categorical stages of object recognition. / Perception, 7, 695鈥?05. CrossRef
  • 作者单位:Kim M. Curby (1)
    William G. Hayward (2)
    Isabel Gauthier (1)

    1. Department of Psychology, Vanderbilt University, 301 Wilson Hall, 37203, Nashville, TN
    2. Chinese University of Hong Kong, Hong Kong
  • ISSN:1531-135X
文摘
The dissociable neural subsystems theory proposes that left-hemisphere (LH) performance is dominated by a viewpoint-invariant (VI) recognition subsystem, whereas right-hemisphere (RH) performance is dominated by a viewpoint-dependent (VD) subsystem (Marsolek, 1999). Studies supporting this theory have used familiar objects and, therefore, may have been confounded by characteristics beyond perceptual features. Experiment 1, a lateralized sequential-matching task with novel objects, showed VD recognition in both hemispheres. In Experiment 2, some participants learned semantic associations for four novel objects, whereas others were exposed to the novel objects without the semantic associations. Both groups later performed a depth-rotated lateralized sequential-matching task. The participants who had learned semantic associations showed greater VD performance in the RH than in the LH; however, the participants in the control group showed equivalent VD performance in both hemispheres. The results suggest that hemispheric differences in VD performance may be partially attributable to an LH advantage for semantic processing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700