用户名: 密码: 验证码:
Analysis of CNC machining based on characteristics of thermal errors and optimal design of experimental programs during actual cutting process
详细信息    查看全文
文摘
The compensation of thermal errors plays a critical role in developing the machine tools of intelligent computer numerically controlled (CNC). According to the international standards, the testing, modeling, and compensation of thermal error of CNC machine tools are carried out only in a so-called idling state where the spindle is free running without any workload. However, in practical applications, machine tools are often applied in the actual cutting state with more influence factors, such as cutting parameters, cooling liquid, and cutting force. Subsequently, the thermal characteristics at idling state and actual cutting state are compared and analyzed in this paper. It was found that the thermal error compensation model under idling state is not precise enough to be applied in actual cutting state. Also, further research finds that different combinations of cutting parameters, such as spindle speed and feed rate, also have influences on the accuracy of prediction and robustness of thermal error model under actual cutting state. Therefore, the cutting parameters of spindle speed, feed rate, depth of cut, and ambient temperature are studied with the usage of the Taguchi method. Through calculating signal-to-noise ratio (SN) of each combination through residual standard deviation of thermal error model, the combination of optimal cutting parameters can be obtained. The resultant analysis shows that the thermal error model under the combination of optimal cutting parameters demonstrates higher accuracy of prediction and better robustness.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700