用户名: 密码: 验证码:
A new triple-frequency cycle slip detecting algorithm validated with BDS data
详细信息    查看全文
文摘
Triple-frequency global navigation satellite systems allow the introduction of additional linear observation combinations. We define two geometry-free phase combinations and one geometry-free pseudorange minus phase linear combination to detect and correct cycle slip in real time. At first, the optimal BDS (BeiDou System) triple-frequency geometry-free phase combinations are selected for cycle slip detection. Then, a detailed analysis of the cycle slip detection is performed by examining whether some special cycle slip groups cannot be discovered by the selected combinations. Since there still remain some cycle slip groups undetectable by the two geometry-free phase combinations, we add a pseudorange minus phase linear combination which is linearly independent with these two phase combinations, to be sure that all the cycle slips can be detected. After that, an effective decorrelation search based on LAMBDA and least squares minimum principle is applied to calculate and determine the cycle slips. The method has been tested on triple-frequency undifferenced BDS data coming from a benign observation environment. Results show that the proposed method is able to detect and repair all the small cycle slips in the three carriers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700