用户名: 密码: 验证码:
Aspergillus niger Enhance Bioactive Compounds Biosynthesis As Well As Expression of Functional Genes in Adventitious Roots of Glycyrrhiza uralensis Fisch
详细信息    查看全文
  • 作者:Jing Li ; Juan Wang ; Jinxin Li ; Dahui Liu
  • 关键词:Glycyrrhiza uralensis Fisch ; Adventitious root ; Aspergillus niger ; HPLC ; ESI ; MSn ; Anti ; oxidant enzymes ; Gene
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:178
  • 期:3
  • 页码:576-593
  • 全文大小:1,610 KB
  • 参考文献:1.Farag, M. A., Porzel, A., & Wessjohann, L. A. (2015). Unequivocal glycyrrhizin isomer determination and comparative in vitro bioactivities of root extracts in four Glycyrrhiza species. Journal of Advanced Research, 6, 99–104.CrossRef
    2.Isbrucker, R. A., & Burdock, G. A. (2006). Risk and safety assessment on the consumption of Licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regulatory Toxicology and Pharmacology, 46, 167–192.CrossRef
    3.Man, S. L., Wang, J., Gao, W. Y., Guo, S. B., Li, Y. Y., Zhang, L. M., & Xiao, P. G. (2013). Chemical analysis and anti-inflammatory comparison of the cell culture of Glycyrrhiza with its field cultivated variety. Food Chemistry, 136, 513–517.CrossRef
    4.Wang, F. C., & Cheng, A. W. (2009). Polysaccharide isolated from Glycyrrhiza uralensis Fisch induces intracellular enzyme activity of macrophages. Mediterranean Journal of Nutrition and Metabolism, 1, 165–169.CrossRef
    5.Schrofelbauer, B., Raffetseder, J., Hauner, M., Wolkerstorfer, A., & Szolar, E. W. O. H. (2009). Glycyrrhizin, the main active compound in liquorice, attenuates proinflammatory responses by interfering with membrane-dependent receptor signalling. Biochemical Journal, 421, 473–482.CrossRef
    6.Zhang, H. C., Liu, J. M., Chen, H. M., Gao, C. C., Lu, H. Y., Zhou, H., Li, Y., & Gao, S. L. (2011). Up-regulation of licochalcone A biosynthesis and secretion by Tween 80 in hairy root cultures of Glycyrrhiza uralensis Fisch. Molecular Biotechnology, 47, 50–56.CrossRef
    7.Wei, R. W., Qiu, F., Kong, W. J., Wei, J. H., Yang, M. H., Luo, Z. L., Qin, J. P., & Ma, X. J. (2013). Co-occurrence of aflatoxin B1, B2, G1, G2 and ochrotoxin A in Glycyrrhiza uralensis analyzed by HPLC-MS/MS. Food Control, 32, 216–221.CrossRef
    8.Zhu, S., Sugiyama, R., Batkhuu, J., Sanchir, C., Zou, K., & Komatsu, K. (2009). Survey of Glycyrrhizae Radix resources in Mongolia: chemical assessment of the underground part of Glycyrrhiza uralensis and comparison with Chinese Glycyrrhizea Radix. Journal of Natural Medicines, 63, 137–146.CrossRef
    9.Dewir, Y. H., Chakrabarty, D., Wu, C. H., Hahn, E. J., Jeon, W. K., & Paek, K. Y. (2010). Influences of polyunsaturated fatty acids (PUFAs) on growth and secondary metabolite accumulation in Panax ginseng C. A. Mayer adventitious roots cultured in air-lift bioreactors. South African Journal of Botany, 76, 354–358.CrossRef
    10.Oh, S. Y., Wu, C. H., Popova, E., Hahn, E. J., & Paek, K. Y. (2009). Cryopreservation of Panax ginseng adventitious roots. Journal of Plant Biology, 52, 348–354.CrossRef
    11.Wu, C. H., Dewir, Y. H., Hahn, E. J., & Paek, K. Y. (2006). Optimization of culturing conditions for the production of biomass and phenolics from adventitious roots of Echinacea angustifolia. Journal of Plant Biology, 49, 193–199.CrossRef
    12.Chetana, R., & Ramawat, K. G. (2009). Elicitor-induced accumulation of stilbenes in cell suspension cultures of Cayratia trifolia (L.) Domin. Plant Biotechnology Report, 3, 135–138.CrossRef
    13.Claudio, D. O., Agnieszka, C., Christopher, D., & Paul, K. B. (2009). Induction of secondary metabolism in grape cell cultures by jasmonates. Functional Plant Biology, 36, 323–338.CrossRef
    14.Shukor, M. F. A., Ismail, I., Zainal, Z., & Noor, N. M. (2013). Development of a Polygonum minus cell suspension culture system and analysis of secondary metabolites enhanced by elicitation. Acta Physiologiae Plantarum, 35, 1675–1689.CrossRef
    15.Karwasara, V. S., Tomar, P., & Dixit, V. K. (2011). Influence of fungal elicitation on glycyrrhizin production in transformed cell cultures of Abrus precatorius Linn. Pharmacognosy Magazine, 7, 307–313.CrossRef
    16.Karwasara, V. S., Jain, R., Tomar, P., & Dixit, V. K. (2010). Elicitation as yield enhancement strategy for glycyrrhizin production by cell cultures of Abrus precatorius Linn. In Vitro Cellular & Developmental Biology - Plant, 46, 354–362.CrossRef
    17.Vakil, M. M. A., & Mendhulkar, V. D. (2013). Enhanced synthesis of andrographolide by Aspergillus niger and Penicillium expansum elicitors in cell suspension culture of Andrographis paniculata (Burm. f.) Nees. Botanical Studies, 54, 49.CrossRef
    18.Cai, S. B., Wang, O., Wu, W., Zhu, S. J., Zhou, F. J., Gao, B. P., Zhang, F. Y., Liu, D., & Cheng, J. Q. (2012). Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolics content (TPC), flavonoids, and antioxidant activities of subfractions from oats (Avena sativa L.). Journal of Agricultural and Food Chemistry, 60, 507–513.CrossRef
    19.Chodisetti, B., Rao, K., Gandi, S., & Giri, A. (2013). Improved gymnemic acid production in the suspension cultures of Gymnema sylvestre through biotic elicitation. Plant Biotechnology Report, 4, 519–525.CrossRef
    20.Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23, 283–333.CrossRef
    21.Li, T.T., Hu, Y.Y., Du, X.H., Tang, H., Shen, C.H., Wu, J.S. (2014). Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. Plos One, 9, doi:10.​1371/​journal.​pone.​0109492
    22.Gao, F. K., Yong, Y. H., & Dai, C. C. (2011). Effects of endophytic fungal elicitor on two kinds of terpenoids production and physiological indexes in Euphorbia pekinensis suspension cells. Journal of Medicinal Plant Research: Planta Medica, 18, 4418–4425.
    23.Weisshaar, B., & Jenkins, G. I. (1998). Phenylpropanoid biosynthesis and its regulation. Current Opinion in Plant Biology, 1, 251–257.CrossRef
    24.Ni, Z. Y., Li, B., Peter, N. M., Lu, M., & Fan, L. (2014). Isolation and expression analysis of two genes encoding cinnamate 4-hydroxylase from cotton (Gossypium hirsutum). Journal of Integrative Agriculture, 13, 2102–2112.CrossRef
    25.Seki, H., Tamura, K., & Muranaka, T. (2015). P450s and UGTs: key players in the structural diversity of triterpenoid saponins. Plant & Cell Physiology, 8, 1463–1471.CrossRef
    26.Han, J. Y., In, J. G., Kwon, Y. S., & Choia, Y. E. (2010). Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry, 71, 36–46.CrossRef
    27.Lee, E. J., Park, S. Y., & Paek, K. Y. (2015). Enhancement strategies of bioactive compound production in adventitious root cultures of Eleutherococcus koreanum Nakai subjected to methyl jasmonate and salicylic acid elicitation through airlift bioreactors. Plant Cell Tissue And Organ, 120, 1–10.CrossRef
    28.Yin, S., Zhang, S., Gao, Y., Wang, W. Y., Man, J., & Liu, S. L. H. (2014). Effects of nitrogen source and phosphate concentration on biomass and metabolites accumulation in adventitious root culture of Glycyrrhiza uralensis Fisch. Acta Physiologiae Plantarum, 36, 915–921.CrossRef
    29.Chen, J. H., Xie, M. Y., Nie, S. P., Wang, Y. X., & Peng, R. H. (2005). Determination of polysaccharides in Panax quinquefolium L. Journal of Food Science and Biotechnology, 24, 72–76.
    30.Wang, J., Zhang, J., Gao, W. Y., Wang, Q., Yin, S. S., Liu, H., & Man, S. L. (2013). Identification of triterpenoids and flavonoids, step-wise aeration treatment as well as antioxidant capacity of Glycyrrhiza uralensis Fisch. cell. Industrial Crop Production, 49, 675–681.CrossRef
    31.Dong, J., Wan, G. W., & Liang, Z. S. (2010). Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. Journal of Biotechnology, 148, 99–104.CrossRef
    32.Thimmaraju, R., Bhagyalakshmi, N., Narayan, M. S., & Ravishankar, G. A. (2003). Kinetics of pigment release from hairy root cultures of Beta vulgaris under the influence of pH, sonication, temperature and oxygen stress. Process Biochemistry, 38, 1069–1076.CrossRef
    33.Wang, Q., Wang, J., Chai, H. Y., Li, J., Man, S. L., & Gao, W. Y. (2015). Optimization of balloon-type bubble bioreactor angle and methyl jasmonate concentration to enhance metabolite production in adventitious roots of Pseudostellaria heterophylla. Research on Chemical Intermediates, 8, 5555–5563.CrossRef
    34.Nazmul, H. A. M., Ulrika, E., & Cyrus, K. A. (2015). Bioreactor technology for clonal propagation of plants and metabolite production. Frontiers in Biology, 10, 177–193.CrossRef
    35.Shin, K. S., Murthy, H. N., Ko, J. Y., & Paek, K. Y. (2002). Growth and betacyanin production by hairy root cultures of Beta vulgaris L. in air lift bioreactors. Biotechnological Letters, 24, 2067–2069.CrossRef
    36.Ahmed, S., Hahn, E. J., & Paek, K. Y. (2008). Aeration volume and photosynthetic photon flux affect cell growth and secondary metabolite contents in bioreactor cultures of Morinda citrifolia. Journal of Plant Biology, 51, 209–212.CrossRef
    37.Zhong, J. J., Fujiyama, K., Seki, T., & Yoshida, T. (1993). On-line monitoring of cell concentration of Perilla frutescens in a bioreactor. Biotechnology and Bioengineering, 42, 542–546.CrossRef
    38.Meijer, J. J., Hoopen, H. J. G., & Libbenga, K. R. (1993). Effects of hydrodynamic stress on cultured plant cell: a literature survey. Enzyme and Microbial Technology, 15, 234–238.CrossRef
    39.Wang, G. R., & Qi, N. M. (2010). Influence of mist intervals and aeration rate on growth and second metabolite production of Pseudostellaria heterophylla adventitious roots in a siphon-mist bioreactor. Biotechnology and Bioprocess Engineering, 15, 1059–1064.CrossRef
    40.Xu, M. J., Dong, J. F., & Zhu, M. Y. (2005). Nitric oxide mediates the fungal elicitor-induced hypericin production of Hypericum perforatum cell suspension cultures through a jasmonic-acid-dependent signal pathway. Plant Physiology, 139, 991–998.CrossRef
    41.Liu, C., Wang, Y., Xu, X., Ouyang, F., Ye, H., & Li, G. (1999). Improvement of artemisinin accumulation in hairy root cultures of Artemisia annua L by fungal elicitor. Bioprocess Engineering, 20, 161–164.
    42.Raskin, I., Skubatz, H., Tang, W., & Meeuse, B. J. D. (1990). Salicylic acid levels in thermogenic and non-sermogenic plants. Annals of Botany, 66, 369–373.
    43.Shulaev, V., Leon, J., & Raskin, I. (1995). Is salicylic acid a translocated signal of systemic acquired resistance in tobacco. Plant Cell, 7, 1691–1701.CrossRef
    44.Yuan, Y. J., Wei, Z. J., Miao, Z. Q., & Wu, J. C. (2002). Acting paths of elicitors on Taxol biosynthesis pathway and their synergistic effect. Biochemical Engineering Journal, 10, 77–83.CrossRef
    45.Zhao, J., Zhu, W. H., & Hu, Q. (2001). Enhanced catharanthine production in Catharanthus roseus cell culture by combined elicitor treatment in shake flasks and bioreactors. Enzyme and Microbial Technology, 28, 673–681.CrossRef
    46.Cai, Z. Z., Smetanska, I., Kastell, A., & Knorr, D. (2012). Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Reports, 31, 461–477.CrossRef
    47.Lee, Y. S., Ju, H. K., Kim, Y. J., Lim, T. G., Uddin, M. R., Kim, Y. B., Baek, H., Kwon, S. W., Lee, K. W., Seo, H. S., Park, S. U., & Yang, T. J. (2013). Enhancement of anti-inflammatory activity of Aloe vera adventitious root extracts through the alteration of primary and secondary metabolites via salicylic acid elicitation. Plos One. doi:10.​1371/​journal.​pone.​0082479Lee .
    48.Yu, L. J., Lan, W. Z., Chen, C., & Yang, Y. (2004). Glutathione levels control glucose-6-phosphate dehydrogenase activity during elicitor-induced oxidative stress in cell suspension cultures of Taxus chinensis. Plant Science, 167, 329–335.CrossRef
    49.Qin, W. M., Lan, W. Z., & Yang, X. (2004). Involvement of NADPH oxidase in hydrogen peroxide accumulation by Aspergillus niger elicitor-induced Taxus chinensis cell cultures. Journal of Plant Physiology, 161, 355–361.CrossRef
    50.Huang, R. H., Liu, J. H., Lu, Y. M., & Xia, R. X. (2008). Effect of salicylic acid on the antioxidant system in the pulp of ‘Cara cara’ navel orange (Citrus sinensis L. Osbeck) at different storage temperatures. Postharvest Biology and Technology, 47, 168–175.CrossRef
    51.Venugopalan, A., & Srivastava, S. (2015). Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. Bioresource Technology, 188, 251–257.CrossRef
    52.Mukherjeea, C., Sircarb, D., Chatterjeec, M., Dasc, S., & Mitra, A. (2014). Combating photooxidative stress in green hairy roots of Daucus carota cultivated under light irradiation. Journal of Plant Physiology, 171, 179–187.CrossRef
    53.Kim, D. G., Kim, Y. J., Lee, S. H., & Lee, I. (2005). Effect of wounding and chemical treatments on expression of the gene encoding cinnamate-4-hydroxylase in Camptotheca acuminata leaves. Journal of Plant Biology, 48, 298–303.CrossRef
    54.Neslihan, T. K., & Sule, A. (2011). Analysis of elicitor inducible cytochrome P450 induction in Astragalus chrysochlorus cells. Plant Omics, 4, 264–269.
    55.Xu, X. J., Hu, X. Y., Neill, S. J., Fang, J. Y., & Cai, W. M. (2005). Fungal elicitor induces singlet oxygen generation, ethylene release and saponin synthesis in cultured cells of Panax ginseng C. A. Meyer. Plant & Cell Physiology, 46, 947–954.CrossRef
  • 作者单位:Jing Li (1) (2)
    Juan Wang (1)
    Jinxin Li (1)
    Dahui Liu (3)
    Hongfa Li (1)
    Wenyuan Gao (1)
    Jianli Li (4)
    Shujie Liu (4)

    1. Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People’s Republic of China
    2. State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, 100700, China
    3. Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Yunnan, 650231, China
    4. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
In the present study, the culture conditions for the accumulation of Glycyrrhiza uralensis adventitious root metabolites in balloon-type bubble bioreactors (BTBBs) have been optimized. The results of the culture showed that the best culture conditions were a cone angle of 90° bioreactor and 0.4–0.6–0.4-vvm aeration volume. Aspergillus niger can be used as a fungal elicitor to enhance the production of defense compounds in plants. With the addition of a fungal elicitor (derived from Aspergillus niger), the maximum accumulation of total flavonoids (16.12 mg g−1) and glycyrrhetinic acid (0.18 mg g−1) occurred at a dose of 400 mg L−1 of Aspergillus niger resulting in a 3.47-fold and 1.8-fold increase over control roots. However, the highest concentration of polysaccharide (106.06 mg g−1) was achieved with a mixture of elicitors (Aspergillus niger and salicylic acid) added to the medium, resulting in a 1.09-fold increase over Aspergillus niger treatment alone. Electrospray ionization tandem mass spectrometry (ESI-MSn) analysis was performed, showing that seven compounds were present after treatment with the elicitors, including uralsaponin B, licorice saponin B2, liquiritin, and (3R)-vestitol, only identified in the mixed elicitor treatment group. It has also been found that elicitors (Aspergillus niger and salicylic acid) significantly upregulated the expression of the cinnamate 4-hydroxylase (C4H), β-amyrin synthase (β-AS), squalene epoxidase (SE) and a cytochrome P450 monooxygenase (CYP72A154) genes, which are involved in the biosynthesis of bioactive compounds, and increased superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700