用户名: 密码: 验证码:
Longitudinal impact of piezoelectric media
详细信息    查看全文
  • 作者:George A. Gazonas ; Raymond A. Wildman ; David A. Hopkins…
  • 关键词:1 ; D elastodynamics ; Numerical inverse Laplace transform ; Mathematica source code ; d’Alembert method ; Dubner–Abate–Crump
  • 刊名:Archive of Applied Mechanics (Ingenieur Archiv)
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:86
  • 期:3
  • 页码:497-515
  • 全文大小:981 KB
  • 参考文献:1.Chen, P.J., Davison, L., McCarthy, M.F.: Electrical responses of nonlinear piezoelectric materials to plane waves of uniaxial strain. J. Appl. Phys. 47(11), 4759–4764 (1976)
    2.Graham, R.A.: Second and third order piezoelectric stress constants of lithium niobate as determined by the impact loading technique. J. Appl. Phys. 48(6), 2153–2163 (1977)CrossRef
    3.Wang, X., Dai, H.L.: Dynamic focusing-effect of piezoelectric fibers subjected to radial impact. Compos. Struct. 78(4), 567–574 (2007)CrossRef
    4.Davison, L.: Fundamentals of Shock Wave Propagation in Solids. Springer, Heidelberg (2008)MATH
    5.Redwood, M.: Transient performance of a piezoelectric transducer. J. Acoust. Soc. Am. 33(4), 527–536 (1961)CrossRef
    6.Steutzer, O.M.: Multiple reflections in a free piezoelectric plate. J. Acoust. Soc. Am. 42(2), 502–508 (1967)CrossRef
    7.Clayton, J.D.: Modeling nonlinear electromechanical behavior of shocked silicon carbide. J. Appl. Phys. 107 (2010)
    8.Graham, R.A.: Strain dependence of longitudinal piezoelectric, elastic, and dielectric constants of x-cut quartz. J. Appl. Phys. 6(12), 4779–4792 (1972)
    9.Lysne, P.C.: One dimensional theory of polarization by shock waves: Application to quartz gauges. J. Appl. Phys. 43(2), 425–431 (1972)CrossRef
    10.Gazonas, G.A., Scheidler, M.J., Velo, A.P.: Exact analytical solutions for elastodynamic impact (2015) (in review)
    11.Gazonas, G.A., Wildman, R.A., Hopkins, D.A.: Elastodynamic impact into piezoelectric media. U.S. Army Research Laboratory, ARL-TR-7056, September (2014)
    12.Le, K.C.: On the impact of piezoceramic rods. Mech. Solids 3, 312–316 (1987)
    13.Le, K.C.: Vibrations of Shells and Rods. Springer, Berlin (1999)CrossRef MATH
    14.Dubner, H., Abate, J.: Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. J. ACM 15(1), 115–123 (1968)CrossRef MathSciNet MATH
    15.Durbin, F.: Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Comput. J. 17(4), 371–376 (1974)CrossRef MathSciNet MATH
    16.Crump, K.: Numerical inversion of Laplace transforms using a Fourier series approximation. J. ACM 23(1), 89–96 (1976)CrossRef MathSciNet MATH
    17.Laverty, R., Gazonas, G.A.: An improvement to the Fourier series method for inversion of Laplace transforms applied to elastic and viscoelastic waves. Int. J. Comput. Methods 3(1), 57–69 (2006)CrossRef MathSciNet MATH
    18.Su, Y., Ma, C.: Transient wave analysis of a cantilever Timoshenko beam subjected to impact loading by Laplace transform and normal mode methods. Int. J. Solids Struct. 49, 1158–1176 (2012)CrossRef
    19.Ing, Y., Liao, H., Huang, K.: The extended Durbin method and its application for piezoelectric wave propagation problems. Int. J. Solids Struct. 50, 4000–4009 (2013)CrossRef
    20.Sirwah, M.A.: Sloshing waves in a heated viscoelastic fluid layer in an excited rectangular tank. Phys. Lett. A 378, 3289–3300 (2014)CrossRef MathSciNet MATH
    21.Randow, C.L., Gazonas, G.A.: Transient stress wave propagation in one-dimensional micropolar bodies. Int. J. Solids Struct. 46(5), 1218–1228 (2009)CrossRef MATH
    22.COMSOL Multiphysics Reference Manual, version 4.4.  Burlington, MA: COMSOL, Inc. (2013)
    23.Mathematica Edition: version 9.0.  Champaign, IL: Wolfram Research (2013)
    24.Cady, W.G.: Piezoelectricity, vol. 1. Dover Publications, New York (1964)
    25.Standards on piezoelectric crystals. In: Proceedings of the I.R.E.; New York: The Institute of Radio Engineers, pp. 1378–1395 (1949)
    26.Lorrain, P., Corson, D.R.: Electromagnetic Fields and Waves, vol. 2. W.H. Freeman & Co., New York (1970)MATH
    27.Costen, R.C., Adamson, D.: Three-dimensional derivation of the electrodynamic jump conditions and momentum-energy laws at a moving boundary. Proc. IEEE 53(9), 1181–1196 (1965)CrossRef
    28.Sternberg, W.J., Smith, T.L.: The Theory of Potential and Spherical Harmonics. University of Toronto Press, Toronto (1964)MATH
    29.Zhang, H.L., Li, M.X., Ying, C.F.: Complete solutions of the transient behavior of a transmitting thickness-mode piezoelectric transducer and their physical interpretations. J. Acoust. Soc. Am. 74(4), 1105–1114 (1983)CrossRef MATH
    30.Davison, L., Graham, R.: Shock compression of solids. Phys. Rep. Rev. Sect. Phys. Lett. 55(4), 255–379 (1979)
    31.Hopkins, D.A., Gazonas, G.A.: Wave propagation in second-order nonlinear piezoelectric media. U.S. Army Research Laboratory, ARL-TR-5766, September (2011)
  • 作者单位:George A. Gazonas (1)
    Raymond A. Wildman (1)
    David A. Hopkins (1)
    Michael J. Scheidler (1)

    1. U.S. Army Research Laboratory, ATTN: RDRL-WMM-B, Aberdeen Proving Ground, MD, 21005-5069, USA
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Mechanics
    Complexity
    Fluids
    Thermodynamics
    Systems and Information Theory in Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0681
文摘
We consider the elastodynamic impact problem involving a one-dimensional finite-thickness piezoelectric flyer traveling at initial velocity \(V_0\) that collides with (and adheres to) a stationary piezoelectric target of finite thickness backed by a semi-infinite non-piezoelectric elastic half-space. We derive expressions for the stress, velocity, and electric displacement in the target at all times after impact. A combined d’Alembert and Laplace transform method is used to derive new numerically based solutions for this class of transient wave propagation problems. A modified Dubner–Abate–Crump (DAC) algorithm is used to invert the analytical Laplace transform domain solutions to the time domain. Unlike many authors who neglect electromechanical coupling in the initially unstressed region ahead of the shock, we consider this effect, which gives rise to the development of a tensile stress wave within the piezoelectric target ahead of the shock. To solve the problem, we derive a new piezoelectric impact boundary condition and apply it to the problem of a finite quartz (Si\(\text {O}_2\)) flyer impacting a lead zirconate titanate (PZT-4) target and find that the solutions obtained using the modified DAC algorithm compare well with those obtained using both a finite-difference time-domain method, and the commercial finite element code, COMSOL multiphysics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700