用户名: 密码: 验证码:
Bio polyetherurethane composites with high content of natural ingredients: hydroxylated soybean oil based polyol, bio glycol and microcrystalline cellulose
详细信息    查看全文
  • 作者:Ewa Głowińska ; Janusz Datta
  • 关键词:Bio based 1 ; 3 ; propanediol ; Bio glycol ; Microcrystalline cellulose ; Modified soybean oil ; Bio composites ; Bio polyurethane
  • 刊名:Cellulose
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:23
  • 期:1
  • 页码:581-592
  • 全文大小:1,014 KB
  • 参考文献:Alamri H, Low I, Alothman Z (2012) Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites. Compos Part B 43:2762–2771CrossRef
    Avérous L, Le Digabel F (2006) Properties of biocomposites based on lignocellulosic fillers. Carbhyd Polym 66:480–493CrossRef
    Azubuike CP, Okhamafe AO (2012) Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Int J Recycl Org Waste Agric 1:9. doi:10.​1186/​2251-7715-1-9 CrossRef
    Bledzki AK, Faruk O, Sperber VE (2006) Cars from bio-fibres. Macromol Mater Eng 291:449–457CrossRef
    Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2(7):502–510CrossRef
    Chen WJ, Gu J, Xu SH (2014) Exploring nanocrystalline cellulose as a green alternative of carbon black in natural rubber/butadiene rubber/styrene-butadiene rubber blends. Express Polym Lett 8(9):659–668CrossRef
    Datta J, Głowińska E (2011) Influence of cellulose on mechanical and thermomechanical properties of elastomers obtained from mixtures containing natural rubber. Polimery 11(12):823–827
    Datta J, Głowińska E (2014) Effect of hydroxylated soybean oil and bio-based propanediol on the structure and thermal properties of synthesised bio-polyurethanes. Ind Crop Prod 61:84–91CrossRef
    Datta J, Kopczyńska P (2015) Effect of kenaf fibre modification on morphology and mechanical properties of thermoplastic polyurethane materials. Ind Crop Prod 74:566–576CrossRef
    Ejikeme PM (2008) Investigation of the physicochemical properties of microcrystalline cellulose from agricultural wastes I: orange mesocarp. Cellulose 15:141–147CrossRef
    Fowler PA, Hughes J, Elias RM (2006) Biocomposites: technology, environmental cerdentials and market forces. J Sci Food Agric 86:1781–1789CrossRef
    Głowińska E, Datta J (2014) A mathematical model of rheological behavior of novel bio-based isocyanate-terminated polyurethane prepolymers. Ind Crop Prod 60:123–129CrossRef
    Głowińska E, Datta J (2015) Structure, morphology and mechanical behaviour of novel bio-based polyurethane composites with microcrystalline cellulose. Cellulose 22:2471–2481CrossRef
    Głowińska E, Kamerke J, Włoch M (2015) Mechanical properties and morphology of biopolyurethane composites reinforced with modified sisal fibers. Przem Chem 94(5):688–693
    Hatakeyama H, Kato NNT, Hatakeyama T (2012) Water absorbent polyurethane composites derived from molasses and lignin filled with microcrystalline cellulose. J Mater Sci 47:7254–7261CrossRef
    Kiziltas A, Gardner DJ, Han Y, Yang HS (2011) Thermal properties of microcrystalline cellulose-filled PET–PTT blend polymer composites. J Therm Anal Calorim 103:163–170CrossRef
    Koleśnik-Nykiel P (2013) Influence of microcrystalline cellulose on morphology, structure and selected macroscopic properties of polyurethane elastomers. Master Thesis, Gdańsk University of Technology
    Kunaver M, Jasiukaitytė E, Čuk N, Oprešnik MSS, Katrašnik T (2011) Biomass waste—a source of raw materials and new energy source. Word Renewable Energy Congress, LinkopingCrossRef
    Li Y, Arthur AJ, Ragauskas J (2012) Kraft lignin-based rigid polyurethane foam. J Wood Chem Technol 32:210–224CrossRef
    Luo X, Mohanty A, Misra M (2013) Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane. Ind Crop Prod 47:13–19CrossRef
    Magnus B, Marie LB, Kristiina O (2007) Extrusion and mechanical properties of highly filled cellulose fibre–polypropylene composites. Compos Part A 38:1922–1931CrossRef
    Mówczyński K (2012) Kompozyty polimerowe: Branża z przyszłością. Chemia i biznes. http://​chemiaibiznes.​com.​pl/​artykuly/​pokaz/​143-Kompozyty_​polimerowe_​Branza_​z_​przyszloscia.​html
    Naheed S, Paridah MT, Mohammad J (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273CrossRef
    Nanclares J, Petrović ZS, Javni I, Ionescu M, Jaramillo F (2015) Segmented polyurethane elastomers by nonisocyanate route. J Appl Polym Sci. doi:10.​1002/​app.​42492
    Oyeniyi Y, Itiola O (2012) The physicochemical characteristic of microcrystalline cellulose, derived from sawdust, agricultural waste products. Int J Pharm Pharm Sci 4(1):197–200
    Prociak A, Rokicki G, Ryszkowska J (2014) Materiały poliuretanowe. Polish Scientific Publishers, Warszawa
    Rajczyk M, Stachecki B (2011) Współczesne materiały kompozytowe wybrane kierunki rozwoju nowych technologii. In: Rajczyk J (ed) Budownictwo o zoptymalizowanym potencjale energetycznym. Czestochowa University of Technology, Częstochowa, pp 202–211
    Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef
    Tien YI, Wei KH (2001) Hydrogen bonding and mechanical properties in segmented montmorillonite/polyurethane nanocomposites of different hard segment ratios. Polymer 42:3213–3221CrossRef
    Xue BL, Wen JL, Sun RC (2014) Lignin-based rigid polyurethane foam reinforced with pulp fiber: synthesis and characterization. ACS Sustain Chem Eng 2:1474–1480CrossRef
  • 作者单位:Ewa Głowińska (1)
    Janusz Datta (1)

    1. Gdansk University of Technology, G. Narutowicza Street 11/12, 80-233, Gdańsk, Poland
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
In our study, we focused on obtaining bio-polyurethane composites using bio-components such as bio glycol, modified natural oil-based polyol, and microcrystalline cellulose (MCC). The pre-polymer method was used to prepare the bio polyurethane matrix. Prepolymer was synthesized using 4,4′-diphenylmethane diisocyanate and a polyol mixture containing 50 wt% of commercial polyether and 50 wt% of hydroxylated soybean oil (H3). Bio based 1,3-propanediol (1,3bioPDO) was used as the prepolymer chain extender. The composites were produced by dispersing 5, 10, 15 and 20 wt% of MCC in the bio polyurethane matrix. The polymerization was catalyzed with 1,4-diazabicyclo[2.2.2]octane. The influence of the added MCC powder on the structure and thermal properties of the obtained composites was investigated. The FTIR analysis demonstrated that the MCC admixture affected the absorbance of C–O–C and C=O groups and the phase separation index of the obtained bio-polyurethanes composites. The results of mechanical tests and scanning microscopy images indicated good interfacial adhesion between the partially bio-based matrix of the composite and bio-filler. The results of thermomechanical analysis showed that the application of MCC as a filler has a positive effect on the storage and loss modulus of the composites. Keywords Bio based 1,3-propanediol Bio glycol Microcrystalline cellulose Modified soybean oil Bio composites Bio polyurethane

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700