用户名: 密码: 验证码:
Prevention of adenosine A2A receptor activation diminishes beat-to-beat alternation in human atrial myocytes
详细信息    查看全文
  • 作者:Cristina E. Molina ; Anna Llach ; Adela Herraiz-Mart铆nez…
  • 关键词:Adenosine receptor ; Atrial myocyte ; Electrophysiology ; l ; Type calcium current ; Sarcoplasmic reticulum
  • 刊名:Basic Research in Cardiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:111
  • 期:1
  • 全文大小:2,468 KB
  • 参考文献:1.Aistrup GL, Kelly JE, Kapur S, Kowalczyk M, Sysman-Wolpin I, Kadish AH, Wasserstrom JA (2006) Pacing-induced heterogeneities in intracellular Ca2+ signaling, cardiac alternans, and ventricular arrhythmias in intact rat heart. Circ Res 99:e65鈥揺73. doi:10.鈥?161/鈥?1.鈥婻ES.鈥?000244087.鈥?6230.鈥媌f CrossRef PubMed
    2.Atienza F, Almendral J, Moreno J, Vaidyanathan R, Talkachou A, Kalifa J, Arenal A, Villacastin JP, Torrecilla EG, Sanchez A, Ploutz-Snyder R, Jalife J, Berenfeld O (2006) Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation 114:2434鈥?442. doi:10.鈥?161/鈥婥IRCULATIONAHA.鈥?06.鈥?33735 CrossRef PubMed
    3.Bertolet BD, Hill JA, Kerensky RA, Belardinelli L (1997) Myocardial infarction related atrial fibrillation: role of endogenous adenosine. Heart 78:88鈥?0PubMedCentral CrossRef PubMed
    4.Bitigen A, Bulut M, Tanalp AC, Kirma C, Barutcu I, Pala S, Erkol A, Boztosun B (2007) Left atrial appendage functions in patients with severe rheumatic mitral regurgitation. Int J Cardiovasc Imaging 23:693鈥?00. doi:10.鈥?007/鈥媠10554-007-9207-y CrossRef PubMed
    5.Bolter CP, Atkinson KJ (1988) Influence of temperature and adrenergic stimulation on rat sinoatrial frequency. Am J Physiol 254:R840鈥揜844PubMed
    6.Burashnikov A, Antzelevitch C (2003) Reinduction of atrial fibrillation immediately after termination of the arrhythmia is mediated by late phase 3 early afterdepolarization-induced triggered activity. Circulation 107:2355鈥?360. doi:10.鈥?161/鈥?1.鈥婥IR.鈥?000065578.鈥?0869.鈥?C CrossRef PubMed
    7.Chang KC, Bayer JD, Trayanova NA (2014) Disrupted calcium release as a mechanism for atrial alternans associated with human atrial fibrillation. PLoS Comput Biol 10:e1004011. doi:10.鈥?371/鈥媕ournal.鈥媝cbi.鈥?004011 PubMedCentral CrossRef PubMed
    8.Cinca J, Sassine A, Deceuninck P, Roca J, Gagne P, Morena H, Puech P (1978) The dependence of T wave alternans on diastolic resting period duration. Eur J Cardiol 7:299鈥?09PubMed
    9.Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95鈥?05. doi:10.鈥?042/鈥媌j20021535 PubMedCentral CrossRef PubMed
    10.Diaz ME, O鈥橬eill SC, Eisner DA (2004) Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans. Circ Res 94:650鈥?56. doi:10.鈥?161/鈥?1.鈥婻ES.鈥?000119923.鈥?4774.鈥?2 CrossRef PubMed
    11.Dinanian S, Boixel C, Juin C, Hulot JS, Coulombe A, Rucker-Martin C, Bonnet N, Le Grand B, Slama M, Mercadier JJ, Hatem SN (2008) Downregulation of the calcium current in human right atrial myocytes from patients in sinus rhythm but with a high risk of atrial fibrillation. Eur Heart J 29:1190鈥?197. doi:10.鈥?093/鈥媏urheartj/鈥媏hn140 CrossRef PubMed
    12.El-Armouche A, Boknik P, Eschenhagen T, Carrier L, Knaut M, Ravens U, Dobrev D (2006) Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation 114:670鈥?80. doi:10.鈥?161/鈥婥IRCULATIONAHA.鈥?06.鈥?36845 CrossRef PubMed
    13.Florea SM, Blatter LA (2012) Regulation of cardiac alternans by beta-adrenergic signaling pathways. Am J Physiol Heart Circ Physiol 303:H1047鈥揌1056. doi:10.鈥?152/鈥媋jpheart.鈥?0384.鈥?012 PubMedCentral CrossRef PubMed
    14.Glasscock E, Voigt N, McCauley M, Sun Q, Li N, Chiang D, Zhou X-B, Molina C, Thomas D, Schmidt C, Skapura D, Noebels J, Dobrev D, Wehrens XT (2015) Expression and function of Kv1.1 potassium channels in human atria from patients with atrial fibrillation. Basic Res Cardiol C7鈥?7(110):1鈥?5. doi:10.鈥?007/鈥媠00395-015-0505-6
    15.Gong Y, Xie F, Stein KM, Garfinkel A, Culianu CA, Lerman BB, Christini DJ (2007) Mechanism underlying initiation of paroxysmal atrial flutter/atrial fibrillation by ectopic foci: a simulation study. Circulation 115:2094鈥?102. doi:10.鈥?161/鈥婥IRCULATIONAHA.鈥?06.鈥?56504 CrossRef PubMed
    16.Hiromoto K, Shimizu H, Furukawa Y, Kanemori T, Mine T, Masuyama T, Ohyanagi M (2005) Discordant repolarization alternans-induced atrial fibrillation is suppressed by verapamil. Circ J 69:1368鈥?373 (JST.JSTAGE/circj/69.1368 [pii]) CrossRef PubMed
    17.Hove-Madsen L, Llach A, Bayes-Genis A, Roura S, Rodriguez Font E, Aris A, Cinca J (2004) Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation 110:1358鈥?363. doi:10.鈥?161/鈥?1.鈥婥IR.鈥?000141296.鈥?9876.鈥?7 CrossRef PubMed
    18.Hove-Madsen L, Prat-Vidal C, Llach A, Ciruela F, Casado V, Lluis C, Bayes-Genis A, Cinca J, Franco R (2006) Adenosine A2A receptors are expressed in human atrial myocytes and modulate spontaneous sarcoplasmic reticulum calcium release. Cardiovasc Res 72:292鈥?02. doi:10.鈥?016/鈥媕.鈥媍ardiores.鈥?006.鈥?7.鈥?20 CrossRef PubMed
    19.Huser J, Wang YG, Sheehan KA, Cifuentes F, Lipsius SL, Blatter LA (2000) Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells. J Physiol 524(Pt 3):795鈥?06. doi:10.鈥?111/鈥媕.鈥?469-7793.鈥?000.鈥?0795.鈥媥 PubMedCentral CrossRef PubMed
    20.Hussain M, Orchard CH (1997) Sarcoplasmic reticulum Ca2+ content, l -type Ca2+ current and the Ca2+ transient in rat myocytes during beta-adrenergic stimulation. J Physiol 505(Pt 2):385鈥?02. doi:10.鈥?111/鈥媕.鈥?469-7793.鈥?997.鈥?85bb.鈥媥 PubMedCentral CrossRef PubMed
    21.Kettlewell S, Burton FL, Smith GL, Workman AJ (2013) Chronic myocardial infarction promotes atrial action potential alternans, afterdepolarizations, and fibrillation. Cardiovasc Res 99:215鈥?24. doi:10.鈥?093/鈥媍vr/鈥媍vt087 PubMedCentral CrossRef PubMed
    22.Kockskamper J, Blatter LA (2002) Subcellular Ca2+ alternans represents a novel mechanism for the generation of arrhythmogenic Ca2+ waves in cat atrial myocytes. J Physiol 545:65鈥?9. doi:10.鈥?111/鈥媕.鈥?469-7793.鈥?997.鈥?85bb.鈥媥 PubMedCentral CrossRef PubMed
    23.Kodama M, Kato K, Hirono S, Okura Y, Hanawa H, Ito M, Fuse K, Shiono T, Watanabe K, Aizawa Y (2001) Mechanical alternans in patients with chronic heart failure. J Card Fail 7:138鈥?45. doi:10.鈥?054/鈥媕caf.鈥?001.鈥?4122 CrossRef PubMed
    24.Komiya N, Seto S, Nakao K, Yano K (2005) The influence of beta-adrenergic agonists and antagonists on T-wave alternans in patients with and without ventricular tachyarrhythmia. Pacing Clin Electrophysiol 28:680鈥?84. doi:10.鈥?111/鈥媕.鈥?540-8159.鈥?005.鈥?0146.鈥媥 CrossRef PubMed
    25.Lenski M, Schleider G, Kohlhaas M, Adrian L, Adam O, Tian Q, Kaestner L, Lipp P, Lehrke M, Maack C, Bohm M, Laufs U (2015) Arrhythmia causes lipid accumulation and reduced glucose uptake. Basic Res Cardiol 110:40. doi:10.鈥?007/鈥媠00395-015-0497-2 CrossRef PubMed
    26.Llach A, Molina CE, Fernandes J, Padro J, Cinca J, Hove-Madsen L (2011) Sarcoplasmic reticulum and l -type Ca2+ channel activity regulate the beat-to-beat stability of calcium handling in human atrial myocytes. J Physiol. doi:10.鈥?113/鈥媕physiol.鈥?010.鈥?97715 PubMedCentral PubMed
    27.Llach A, Molina CE, Prat-Vidal C, Fernandes J, Casado V, Ciruela F, Lluis C, Franco R, Cinca J, Hove-Madsen L (2011) Abnormal calcium handling in atrial fibrillation is linked to up-regulation of adenosine A2A receptors. Eur Heart J 32:721鈥?29. doi:10.鈥?093/鈥媏urheartj/鈥媏hq464 CrossRef PubMed
    28.Lugo CA, Cantalapiedra IR, Penaranda A, Hove-Madsen L, Echebarria B (2014) Are SR Ca content fluctuations or SR refractoriness the key to atrial cardiac alternans?: Insights from a human atrial model. Am J Physiol Heart Circ Physiol 306:H1540鈥揌1552. doi:10.鈥?152/鈥媋jpheart.鈥?0515.鈥?013 CrossRef PubMed
    29.Mackenzie L, Roderick HL, Berridge MJ, Conway SJ, Bootman MD (2004) The spatial pattern of atrial cardiomyocyte calcium signalling modulates contraction. J Cell Sci 117:6327鈥?337. doi:10.鈥?242/鈥媕cs.鈥?1559 CrossRef PubMed
    30.Narayan SM, Bayer JD, Lalani G, Trayanova NA (2008) Action potential dynamics explain arrhythmic vulnerability in human heart failure: a clinical and modeling study implicating abnormal calcium handling. J Am Coll Cardiol 52:1782鈥?792. doi:10.鈥?016/鈥媕.鈥媕acc.鈥?008.鈥?8.鈥?37 PubMedCentral CrossRef PubMed
    31.Narayan SM, Bode F, Karasik PL, Franz MR (2002) Alternans of atrial action potentials during atrial flutter as a precursor to atrial fibrillation. Circulation 106:1968鈥?973. doi:10.鈥?161/鈥?1.鈥婥IR.鈥?000037062.鈥?5762.鈥婤4 CrossRef PubMed
    32.Neef S, Dybkova N, Sossalla S, Ort KR, Fluschnik N, Neumann K, Seipelt R, Schondube FA, Hasenfuss G, Maier LS (2010) CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res 106:1134鈥?144. doi:10.鈥?161/鈥婥IRCRESAHA.鈥?09.鈥?03836 CrossRef PubMed
    33.Olah ME (1997) Identification of A2a adenosine receptor domains involved in selective coupling to Gs. Analysis of chimeric A1/A2a adenosine receptors. J Biol Chem 272:337鈥?44. doi:10.鈥?074/鈥媕bc.鈥?72.鈥?.鈥?37 PubMed
    34.Olah ME, Stiles GL (1992) Adenosine receptors. Annu Rev Physiol 54:211鈥?25. doi:10.鈥?146/鈥媋nnurev.鈥媝h.鈥?4.鈥?30192.鈥?01235 CrossRef PubMed
    35.Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS (1999) Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation 99:1385鈥?394. doi:10.鈥?161/鈥?1.鈥婥IR.鈥?9.鈥?0.鈥?385 CrossRef PubMed
    36.Picht E, DeSantiago J, Blatter LA, Bers DM (2006) Cardiac alternans do not rely on diastolic sarcoplasmic reticulum calcium content fluctuations. Circ Res 99:740鈥?48. doi:10.鈥?161/鈥?1.鈥婻ES.鈥?000244002.鈥?8813.鈥?1 CrossRef PubMed
    37.Rosenbaum DS, Jackson LE, Smith JM, Garan H, Ruskin JN, Cohen RJ (1994) Electrical alternans and vulnerability to ventricular arrhythmias. N Engl J Med 330:235鈥?41. doi:10.鈥?056/鈥婲EJM199401273300鈥?02 CrossRef PubMed
    38.Shusterman V, Goldberg A, London B (2006) Upsurge in T-wave alternans and nonalternating repolarization instability precedes spontaneous initiation of ventricular tachyarrhythmias in humans. Circulation 113:2880鈥?887. doi:10.鈥?161/鈥婥IRCULATIONAHA.鈥?05.鈥?07895 CrossRef PubMed
    39.Van Wagoner DR, Pond AL, Lamorgese M, Rossie SS, McCarthy PM, Nerbonne JM (1999) Atrial l-type Ca2+ currents and human atrial fibrillation. Circ Res 85:428鈥?36. doi:10.鈥?161/鈥?1.鈥婻ES.鈥?5.鈥?.鈥?28 CrossRef PubMed
    40.Van Wagoner DR, Pond AL, McCarthy PM, Trimmer JS, Nerbonne JM (1997) Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ Res 80:772鈥?81CrossRef PubMed
    41.Vest JA, Wehrens XH, Reiken SR, Lehnart SE, Dobrev D, Chandra P, Danilo P, Ravens U, Rosen MR, Marks AR (2005) Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation 111:2025鈥?032. doi:10.鈥?161/鈥?1.鈥婥IR.鈥?000162461.鈥?7140.鈥?C CrossRef PubMed
    42.Voigt N, Heijman J, Wang Q, Chiang DY, Li N, Karck M, Wehrens XH, Nattel S, Dobrev D (2014) Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation 129:145鈥?56. doi:10.鈥?161/鈥婥IRCULATIONAHA.鈥?13.鈥?06641 PubMedCentral CrossRef PubMed
    43.Voigt N, Li N, Wang Q, Wang W, Trafford AW, Abu-Taha I, Sun Q, Wieland T, Ravens U, Nattel S, Wehrens XH, Dobrev D (2012) Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+鈥揅a2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation 125:2059鈥?070. doi:10.鈥?161/鈥婥IRCULATIONAHA.鈥?11.鈥?67306 CrossRef PubMed
    44.Workman AJ, Kane KA, Rankin AC (1999) Ionic basis of a differential effect of adenosine on refractoriness in rabbit AV nodal and atrial isolated myocytes. Cardiovasc Res 43:974鈥?84 (S0008-6363(99)00166-2 [pii]) CrossRef PubMed
    45.Xiao B, Tian X, Xie W, Jones PP, Cai S, Wang X, Jiang D, Kong H, Zhang L, Chen K, Walsh MP, Cheng H, Chen SR (2007) Functional consequence of protein kinase A-dependent phosphorylation of the cardiac ryanodine receptor: sensitization of store overload-induced Ca2+ release. J Biol Chem 282:30256鈥?0264. doi:10.鈥?074/鈥媕bc.鈥婱703510200 CrossRef PubMed
  • 作者单位:Cristina E. Molina (1) (5)
    Anna Llach (2)
    Adela Herraiz-Mart铆nez (1)
    Carmen Tarifa (1)
    Montserrat Barriga (1)
    Rob F. Wiegerinck (2)
    Jacqueline Fernandes (2)
    Nuria Cabello (1)
    Alex Vallmitjana (4)
    Ra煤l Benit茅z (4)
    Jos茅 Montiel (3)
    Juan Cinca (2)
    Leif Hove-Madsen (1)

    1. Cardiac Rhythm and Contraction, Cardiovascular Research Centre CSIC-ICCC and IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, St Antoni M陋 Claret 167, 08025, Barcelona, Spain
    5. Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, 45122, Essen, Germany
    2. Department of Cardiology and IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
    4. Department of Automatic Control, Universitat Polit猫cnica de Catalunya, Barcelona, Spain
    3. Department of Cardiac Surgery and IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Cardiology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-1803
文摘
Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 卤 0.1 to 0.6 卤 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 卤 0.1 to 0.5 卤 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 卤 3 to 51 卤 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 卤 0.12 to 1.86 卤 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 卤 0.1 to 1.2 卤 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation. Keywords Adenosine receptor Atrial myocyte Electrophysiology l-Type calcium current Sarcoplasmic reticulum

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700