用户名: 密码: 验证码:
Understanding the growth mechanism of stabilizer-free Ag nanoparticles on reduced graphene oxide: the role of CO
详细信息    查看全文
  • 作者:Weiyin Gao (1)
    Chenxin Ran (1)
    Minqiang Wang (1)
    Xi Yao (1)
    Delong He (2)
    Jinbo Bai (2)
  • 关键词:Stabilizer ; free Ag nanoparticle ; Growth mechanism ; Thermal reduction ; Anisotropic growth
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:15
  • 期:6
  • 全文大小:963KB
  • 参考文献:1. Bai S, Shen XP (2012) Graphene-inorganic nanocomposites. RSC Advances 2:64-8 CrossRef
    2. Bai H, Xu YX, Zhao L, Li C, Shi GQ (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 13:1667-669 CrossRef
    3. Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902-07 CrossRef
    4. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371-23 CrossRef
    5. Bonaccorso F, Sun F, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photon 4:611-22
    6. Chen WF, Yan LF (2010) Preparation of graphene by a low temperature thermal reduction at atmosphere pressure. Nanoscale 2:559-63 CrossRef
    7. Fan JC, Shi ZX, Ge Y, Wang JL, Wang Y, Yin J (2012) Gum arabic assisted exfoliation and fabrication of Ag-graphene-based hybrids. J Mater Chem 22:13764-3772 CrossRef
    8. Germain V, Li J, Ingert D, Wang ZL, Pileni MP (2003) Stacking faults in formation of silver nanodisks. J Phys Chem B 107:8717-720 CrossRef
    9. He QY, Sudibya HG, Yin ZY, Wu SX, Li H, Boey F, Huang W, Chen P, Zhang H (2010) Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano 4:3201-208 CrossRef
    10. He QY, Wu SX, Gap XL, Yin ZY, Li H, Chen P, Zhang H (2011) Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5:5038-044 CrossRef
    11. He QY, Wu SX, Yin ZY, Zhang H (2012) Graphene-based electronic sensors. Chem Sci 3:1764-772 CrossRef
    12. Hong TK, Lee DW, Choi HJ, Shin HS, Kim BS (2010) Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene. ACS Nano 4:3861-868 CrossRef
    13. Huang X, Zhou XZ, Wu SX, Wei YY, Qi XY, Zhang J, Boey F, Zhang H (2010) Reduced graphene oxide-templated photochemical synthesis and in situ assembly of Au nanodots to orderly patterned Au nanodot chains. Small 6:513-16 CrossRef
    14. Huang X, Li H, Li SZ, Wu SX, Boey F, Ma J, Zhang H (2011a) Synthesis of gold square-like plates from ultrathin square sheets: the evolution of structure phase and shape. Angew Chem Int Ed 50:12245-2248 CrossRef
    15. Huang X, Li SZ, Huang YZ, Wu SZ, Zhou XZ, Li SZ, Gan CL, Boey F, Mirkin CA, Zhang H (2011b) Sythesis of hexagonal close-packed gold nanostructures. Nat Commun 2:292 CrossRef
    16. Huang X, Yin ZY, Wu SX, Qi XY, He QY, Zhang QC, Yan QY, Boey F, Zhang H (2011c) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876-902 CrossRef
    17. Huang X, Li SZ, Wu SX, Huang YZ, Boey F, Gan CL, Zhang H (2012a) Graphene oxide-templated synthesis of ultrathin tadpole-shaped Au nanowires with alternating / hcp and / fcc domains. Adv Mater 24:979-83 CrossRef
    18. Huang X, Qi XY, Boey F, Zhang H (2012b) Graphene-based composites. Chem Soc Rev 41:666-86 CrossRef
    19. Huang X, Zeng ZY, Fan ZX, Liu JQ, Zhang H (2012c) Graphene-based electrodes. Adv Mater 24:5979-004 CrossRef
    20. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339 CrossRef
    21. Jin Z, Nackashi D, Lu W, Kittrell C, Tour JM (2010) Decoration migration, and aggregation of palladium nanoparticles on graphene sheets. Chem Mater 22:5695-699 CrossRef
    22. Lamer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847-854 CrossRef
    23. Li WB, Guo YY, Zhang P (2010) SERS-active silver nanoparticles prepared by a simple and green method. J Phys Chem C 114:6413-417 CrossRef
    24. Lin ZY, Yao YG, Li Z, Liu Y, Li Z, Wong CP (2010) Solvent-assisted thermal reduction of graphite oxide. J Phys Chem C 114:14819-4825 CrossRef
    25. Liu Q, Liu ZF, Zhang XY, Yang LY, Zhang N, Pan GL, Yin SG, Chen YS, Wei J (2009) Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv Funct Mater 19:894-04 CrossRef
    26. Liu L, Liu JC, Wang YJ, Yan XL, Sun DD (2011) Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New J Chem 35:1418-423 CrossRef
    27. Mao AQ, Zhang DH, Jin X, Gu XL, Wei XQ, Yang GJ, Liu XH (2012) Synthesis of graphene oxide sheets decorated by silver nanoparticles in organic phase and their catalytic activity. J Phys Chem Solids 73:982-86 CrossRef
    28. Paci JT, Belytschko T, Schatz GC (2007) Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. J Phys Chem C 111:18099-8111 CrossRef
    29. Park SJ, An JH, Jung IH, Piner RD, An SJ, Li XS, Velamakanni A, Ruoff RS (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593-597 CrossRef
    30. Pasricha R, Gupta S, Srivastava AK (2009) A facile and novel synthesis of Ag-graphene-based nanocomposites. Small 5:2253-259 CrossRef
    31. Pastoriza-Santos I, Liz-Marzán LM (2002) Formation of PVP-protected metal nanoparticles in DMF. Langmuir 18:2888-894
    32. Pol VG, Srivastava DN, Palchik O, Palchik V, Slifkin MA, Weiss AM, Gedanken A (2002) Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir 18:3352-357 CrossRef
    33. Ran CX, Wang MQ, Gao WY, Ding JJ, Shi YH, Song XH, Chen HW, Ren ZY (2012) Study on photoluminescence quenching and photostability enhancement of MEH-PPV by reduced graphene oxide. J Phys Chem C 116:23053-3060 CrossRef
    34. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752-777 CrossRef
    35. Reed JC, Zhu H, Zhu AY, Li C, Cubukcu E (2012) Graphene-enables silver nanoantenna sensors. Nano Lett 8:4090-094 CrossRef
    36. Song JL, Yin ZY, Yang ZJ, Amaladass P, Wu SX, Ye J, Zhao Y, Deng WQ, Zhang H, Liu XW (2011) Enhancement of photogenerated electron transport in dye-sensitized solar cells with introduction of a reduced graphene oxide–TiO2 junction. Chem Eur J 17:10832-0837 hem.201101263">CrossRef
    37. Spendelow JS, Wieckowski A (2004) Noble metal decoration of single crystal platinum surfaces to create well-defined bimetallic electrocatalysts. Phys Chem Chem Phys 6:5094-118 CrossRef
    38. Sun XP, Dong SJ, Wang EK (2004) One-step preparation and characterization of poly(propyleneimine) dendrimer-protected silver nanoclusters. Macromolecules 37:7105-108 CrossRef
    39. Tian JQ, Liu S, Zhang YW, Li HY, Wang L, Luo YL, Asiri AM, Al-Youbi AO, Sun XP (2012) Environmentally friendly, one-pot synthesis of Ag nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation. Inorg Chem 51:4742-746 CrossRef
    40. Tjoa V, Jun W, Dravid V, Mhaisalkar S, Mathews N (2011) Hybrid graphene-metal nanoparticle systems: electronic properties and gas interaction. J Mater Chem 21:15593-5599 CrossRef
    41. Tsuji M, Ogino M, Matsuo R, Kumagae H, Hikino S, Kim T, Yoon SH (2010) Stepwise growth of decahedral and icosahedral silver nanocrystals in DMF. Cryst Growth Des 10:296-01 CrossRef
    42. Tung VC, Chen LM, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y (2009) Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett 9:1949-955 CrossRef
    43. Wan XJ, Long GK, Huang L, Chen YS (2011) Graphene: a promising material for organic photovoltaic cells. Adv Mater 23:5342-358 CrossRef
    44. Wang ZL, Xu D, Huang Y, Wu Z, Wang LM, Zhang XB (2012) Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries. Chem Commun 48:976-78 CrossRef
    45. Wiley BJ, Im SH, Li ZY, McLellan J, Siekkinen A, Xia YN (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110:15666-5675 CrossRef
    46. Wu SX, He QY, Zhou CM, Qi XY, Huang X, Yin ZY, Yang YH, Zhang H (2012) Synthesis of Fe3O4 and Pt nanoparticles on reduced graphene oxide and their use as a recyclable catalyst. Nanoscale 4:2478-483 CrossRef
    47. Wu SX, He QY, Tan CL, Wang YD, Zhang H (2013) Graphene-based electrochemical sensors. Small 9:1160-172 CrossRef
    48. Xia XH, Zeng J, Zhang Q, Moran CH, Xia YN (2012) Recent developments in shape-controlled synthesis of silver nanocrystals. J Phys Chem C 116:21647-1656 CrossRef
    49. Xu WP, Zhang LC, Li JP, Lu Y, Li HH, Ma YN, Wang WD, Yu SH (2011) Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J Mater Chem 21:4593-597 CrossRef
    50. Yin ZY, Sun SY, Salim T, Wu SX, Huang X, He QY, Lam YM, Zhang H (2010a) Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 4:5263-268 CrossRef
    51. Yin ZY, Wi SX, Zhou XZ, Huang X, Zhang QC, Boey F, Zhang H (2010b) Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 6:307-12 CrossRef
    52. Zhang Z, Xu FG, Yang WS, Guo MY, Wang XD, Zhang BL, Tang JL (2011) A facile one-pot method to high-quality Ag-graphene composite nanosheets for efficient surface-enhanced Raman scattering. Chem Commun 47:6440-442 CrossRef
    53. Zhong J, David N, Wei L, Carter K, James MT (2010) Decoration, migration, and aggregation of palladium nanoparticles on graphene sheets. Chem Mater 22:5695-699 CrossRef
    54. Zhou XZ, Huang X, Qi XY, Wu SX, Xue C, Boey F, Yan QY, Chen P, Zhang H (2009) In suit synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113:10842-0846 CrossRef
    55. Zhou KF, Zhu YH, Yang XL, Li CZ (2010) One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction. New J Chem 34:2950-955 CrossRef
    56. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906-924 CrossRef
  • 作者单位:Weiyin Gao (1)
    Chenxin Ran (1)
    Minqiang Wang (1)
    Xi Yao (1)
    Delong He (2)
    Jinbo Bai (2)

    1. Electronic Materials Research Laboratory, Key Laboratory of Education Ministry, Xi’an Jiaotong University, Xi’an, 710049, Shaanxi, People’s Republic of China
    2. Laboratory MSSMat, UMR CNRS8579, Ecole Central Paris, 92290, Chatenay-malabry, France
  • ISSN:1572-896X
文摘
In this study, one-step approach to prepare stabilizer-free Ag–graphene nanocomposites using DMAc-assisted thermal reduction method with uniform distribution of “near spherical-Ag nanoparticles (Ag NPs) in the range of 16-0?nm is reported. Interestingly, from the change of absorption spectrum as a function of reaction time, we observed that the characteristic absorption peak of Ag NPs shows no peak position shift in a quite long time without extra stabilizer while red-shift and broaden after continuous reaction. To explain this phenomenon, we further proposed a growth mechanism that CO, which is generated from reduction of functional groups on GO, adsorbed on the surface of Ag NPs and leaded to growth cease of Ag NPs into a narrow size distribution during the reduction of GO. Meanwhile, Ag NPs can catalyze the oxidation of adsorbed-CO to CO2 in the presence of O2 which can easily desorb from Ag surfaces. Hence, after fully removal of functional groups on GO, continuous supply of CO was cutoff while the desorption of adsorbed-CO was still happening continually, so Ag NPs start to gradually grow and resulting in aggregation. Moreover, the dosage of less DMAc or more AgNO3 would cause the anisotropic growth and form multiply twinned structure of Ag NPs. Our study presents a useful understanding on the growth of Ag NPs on graphene.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700