用户名: 密码: 验证码:
Molecular dynamics simulation of coarse-grained poly(L-lysine) dendrimers
详细信息    查看全文
  • 作者:Ali Rahimi ; Sepideh Amjad-Iranagh ; Hamid Modarress
  • 关键词:Coarse grained simulation ; Drug delivery ; Molecular dynamics ; Poly(L ; lysine) dendrimer
  • 刊名:Journal of Molecular Modeling
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:22
  • 期:3
  • 全文大小:730 KB
  • 参考文献:1.Baoukina S, Monticelli L, Tieleman DP (2013) Interaction of pristine and functionalizedcarbon nanotubes with lipid membranes. J Phys Chem B 117:12113–12123CrossRef
    2.Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185CrossRef
    3.Yonetake K, Masuko T (1999) Poly(propyleneimine) dendrimers peripherally modified with mesogens. Macromolecular 32:6578–6586CrossRef
    4.Zhang X, Oulad-abdelghani M, Zelkin AN, Wang Y, Haı Y, Benkirane-jessel N, Mainard D, Voegel J, Caruso F (2010) Poly(L-lysine) nanostructured particles for gene delivery and hormone stimulation. Biomaterials 31:1699–1706CrossRef
    5.Fox ME, Guillaudeu S, Fre JMJ, Jerger K, Macaraeg N, Szoka FC (2009) Synthesis and in Vivo antitumor efficacy of PEGylated Poly(L-lysine) dendrimer-camptothecin conjugates. Mol Pharm 6:1562–1572CrossRef
    6.Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43CrossRef
    7.Stiriba S, Frey H, Haag R (2002) Dendritic polymers in biomedical applications: From potential to clinical use in diagnostics and therapy. Angew Chem Int Ed 41:1329–1334CrossRef
    8.Niedrhafner P, Šebestik J, Ježek J (2005) Peptide dendrimers. J Peptide Sci 11:757–788CrossRef
    9.Boas U, Heegaard PM (2004) Dendrimers in drug research. Chem Soc Rev 33:43–63CrossRef
    10.Perumal OP, Inapagolla R, Kannan S, Kannan RM (2008) The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 29:3469–347611CrossRef
    11.Choi JS, Lee EJ, Choi YH, Jeong YJ, Park JS (1999) Poly(ethylene glycol)-block-poly(L-lysine) dendrimer: novel linear polymer/dendrimer block copolymer forming a spherical water-soluble polyionic complex with DNA. Bioconj Chem 10:62–65CrossRef
    12.Byrne M, Victory D, Hibbitts A, Lanigan M, Heise A, Cryan S (2013) Molecular weight and architectural dependence of well-defined star-shaped poly(lysine) as a gene delivery vector. Biomater Sci 1:1223–1234CrossRef
    13.Yevlampieva N, Dobrodumov A, Nazarova O, Okatova O (2012) Hydrodynamic behavior of dendrigraft polylysines in water and dimethylformamide. Poly 4:20–31
    14.Okuda T, Kawakami S, Maeie T, Niidome T (2006) Biodistribution characteristics of amino acid dendrimers and their PEGylated derivatives after intravenous administration. J Contrl Rel 114:69–77CrossRef
    15.Kaminskas LM, Boyd BJ, Karellas P, Krippner GY, Lessene R, Kelly B, Porter CJH (2008) The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated poly L-Lysine dendrimers. Mol Pharm 5:449–463CrossRef
    16.Okuda T, Sugiyama A, Niidome T, Aoyagi H (2004) Characters of dendritic poly(l-lysine) analogues with the terminal lysines replaced with arginines and histidines as gene carriers in vitro. Biomater 25:537–544CrossRef
    17.Kaminskas LM, Kelly BD, Mcleod VM, Boyd BJ, Krippner GY, Williams ED, Porter CJH (2009) Pharmacokinetics and tumor disposition of PEGylated, methotrexate conjugated Poly-L-lysine dendrimers. Mol Pharm 6:1190–1204CrossRef
    18.Rossi J, Boiteau L, Collet H, Tsamba BM, Larcher N (2012) Functionalisation of free amino groups of lysine dendrigraft (DGL) polymers. Tetrahedron Lett 53:2976–2979CrossRef
    19.Liu Y, Bryantsev VS, Diallo MS, Goddard WA III (2009) PAMAM dendrimers undergo pH responsive conformational changes without swelling. J Am Chem Soc 131:2798–2799CrossRef
    20.Markelov DA, Falkovich SG, Neelov IM, Ilyash MY, Matveev VV, Lähderanta E, Ingman P, Darinskii AA (2015) Molecular dynamics simulation of spin–lattice NMR relaxation in poly- l -lysine dendrimers: manifestation of the semiflexibility effect. Phys Chem Chem Phys 17:3214–3226CrossRef
    21.Hong K, Liu Y, Porcar L, Liu D, Gao CY, Smith GS, Herwig KW, Cai S, Li X, Wu B, Chen WR, Liu L (2012) Structural response of polyelectrolyte dendrimer towards molecular protonation: the inconsistency revealed by SANS and NMR. J Phys Condens Matter 24:064116CrossRef
    22.Amjad-Iranagh GK, Modarress H (2014) Molecular simulation study of PAMAM dendrimer composite membranes. J Mol Model 20:2119–2124CrossRef
    23.Roberts BP, Scanlon MJ, Krippner GY, Chalmers DK (2009) Molecular dynamics of poly(L-lysine) dendrimers with naphthalene disulfonate Caps. Macromol 42:2775–2783CrossRef
    24.Neelov IM, Markelov DA, Falkovich SG, Okrugin BM, Darinskii AA (2013) Mathematical simulation of lysine dendrimers: temperature dependences. Poly Sci 55:154–161
    25.Lee H, Choi JS, Larson RG (2011) Molecular dynamics studies of the size and internal structure of the PAMAM dendrimer grafted with arginine and histidine. Macromol 44:8681–8686CrossRef
    26.Kavyani S, Amjad-iranagh S, Modarress H (2014) Aqueous poly(amidoamine) dendrimer G3 and G4 generations with several interior cores at pHs 5 and 7: a molecular dynamics simulation study. J Phys Chem B 118:3257–3266CrossRef
    27.Lee H, Larson R (2008) Lipid bilayer curvature and pore formation induced by charged linear polymers and dendrimers: the effect of molecular shape. J Phys Chem B 112:12279–12285CrossRef
    28.Hess B, Kutzner C (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRef
    29.Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718CrossRef
    30.Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, Oostenbrink C, Mark AE (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput 7:4026–4037CrossRef
    31.Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:14101–14107CrossRef
    32.Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190CrossRef
    33.Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRef
    34.Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824CrossRef
    35.Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory and Comput 4:819–834CrossRef
    36.Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRef
    37.Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular Ddnamics. J Mol Graph 14:33–38CrossRef
    38.Falkovich S, Markelov D, Neelov I, Darinskii A (2013) Are structural properties of dendrimers sensitive to the symmetry of branching? Computer simulation of lysine dendrimers. J Chem Phys 139:64903–64913CrossRef
  • 作者单位:Ali Rahimi (1)
    Sepideh Amjad-Iranagh (1)
    Hamid Modarress (1)

    1. Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
Poly(L-lysine) (PLL) dendrimer are amino acid based macromolecules and can be used as drug delivery agents. Their branched structure allows them to be functionalized by various groups to encapsulate drug agents into their structure. In this work, at first, an attempt was made on all-atom simulation of PLL dendrimer of different generations. Based on all-atom results, a course-grained model of this dendrimer was designed and its parameters were determined, to be used for simulation of three generations of PLL dendrimer, at two pHs. Similar to the all-atom, the coarse-grained results indicated that by increasing the generation, the dendrimer becomes more spherical. At pH 7, the dendrimer had larger size, whereas at pH 12, due to back folding of branching chains, they had the tendency to penetrate into the inner layers. The calculated radial probability and radial distribution functions confirm that at pH 7, the PLL dendrimer has more cavities and as a result it can encapsulate more water molecules into its inner structure. By calculating the moment of inertia and the aspect ratio, the formation of spherical structure for PLL dendrimer was confirmed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700