用户名: 密码: 验证码:
Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility
详细信息    查看全文
  • 作者:Arthur M Talman (1) (2)
    Judith H Prieto (3) (4)
    Sara Marques (1)
    Ceereena Ubaida-Mohien (5)
    Mara Lawniczak (1)
    Mark N Wass (6) (7)
    Tao Xu (3) (8)
    Roland Frank (9)
    Andrea Ecker (1)
    Rebecca S Stanway (1) (10)
    Sanjeev Krishna (11)
    Michael JE Sternberg (6)
    Georges K Christophides (1)
    David R Graham (5)
    Rhoel R Dinglasan (12)
    John R Yates III (3)
    Robert E Sinden (1)

    1. Division of Cell and Molecular Biology
    ; Imperial College ; London ; UK
    2. Department of Microbial Pathogenesis
    ; Yale University School of Medicine ; New Haven ; CT ; 06510 ; USA
    3. The Scripps Research Institute
    ; La Jolla ; CA ; 92037 ; USA
    4. Chemistry Department
    ; Western Connecticut State University ; Danbury ; CT ; USA
    5. Department of Molecular & Comparative Pathobiology
    ; Johns Hopkins School of Medicine ; 733 N Broadway ; Baltimore ; MD ; 21205 ; USA
    6. The Centre for Bioinformatics
    ; Department of Life sciences ; Imperial College ; London ; SW7 2AZ ; UK
    7. Centre for Molecular Processing
    ; School of Biosciences ; University of Kent ; Canterbury ; Kent ; CT2 7NH ; UK
    8. Dow AgroSciences LLC
    ; 9330 Zionsville Road ; Indianapolis ; IN ; 46268 ; USA
    9. Research Centre for Infectious Diseases
    ; University of W眉rzburg ; R枚ntgenring 11 ; 97070 ; W眉rzburg ; Germany
    10. Bernhard Nocht Institute for Tropical Medicine
    ; Bernhard-Nocht-Str 74 ; 20359 ; Hamburg ; Germany
    11. Centre for Infection
    ; Division of Cellular and Molecular Medicine ; St George鈥檚 ; University of London ; Cranmer Terrace ; London ; SW17 0RE ; UK
    12. W Harry Feinstone Department of Molecular Microbiology & Immunology
    ; The Johns Hopkins Malaria Research Institute ; 615 N Wolfe Street ; Baltimore ; MD ; 21205 ; USA
  • 关键词:Gamete ; Plasmodium ; Glycolysis ; Flagellum ; Energy metabolism
  • 刊名:Malaria Journal
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:1,693 KB
  • 参考文献:1. Sinden, RE, Canning, EU, Bray, RS, Smalley, ME (1978) Gametocyte and gamete development in Plasmodium falciparum. Proc R Soc Lond B Biol Sci 201: pp. 375-399 CrossRef
    2. Sinden, RE, Croll, NA (1975) Cytology and kinetics of microgametogenesis and fertilization in Plasmodium yoelii nigeriensis. Parasitology 70: pp. 53-65 CrossRef
    3. Briggs, LJ, Davidge, JA, Wickstead, B, Ginger, ML, Gull, K (2004) More than one way to build a flagellum: comparative genomics of parasitic protozoa. Curr Biol 14: pp. R611-R612 CrossRef
    4. Wickstead, B, Gull, K (2007) Dyneins across eukaryotes: a comparative genomic analysis. Traffic 8: pp. 1708-1721 CrossRef
    5. Gibbons, BH, Gibbons, IR (1972) Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with Triton X-100. J Cell Biol 54: pp. 75-97 CrossRef
    6. Brokaw, CJ (1971) Bend Propagation by a sliding filament model for flagella. J Exp Biol 55: pp. 289-304
    7. Sinden, RE, Canning, EU, Spain, B (1976) Gametogenesis and fertilization in Plasmodium yoelii nigeriensis - Transmission electron-microscope study. Proc R Soc Lond B Biol Sci 193: pp. 55-76 CrossRef
    8. Creasey, A, Mendis, K, Carlton, J, Williamson, D, Wilson, I, Carter, R (1994) Maternal inheritance of extrachromosomal DNA in malaria parasites. Mol Biochem Parasitol 65: pp. 95-98 CrossRef
    9. Okamoto, N, Spurck, TP, Goodman, CD, McFadden, GI (2009) Apicoplast and mitochondrion in gametocytogenesis of Plasmodium falciparum. Eukaryot Cell 8: pp. 128-132 CrossRef
    10. Khan, SM, Franke-Fayard, B, Mair, GR, Lasonder, E, Janse, CJ, Mann, M, Waters, AP (2005) Proteome analysis of separated male and female gametocytes reveals novel sex-specific Plasmodium biology. Cell 121: pp. 675-687 CrossRef
    11. Carter, R, Gwadz, RW, McAuliffe, FM (1979) Plasmodium gallinaceum: Transmission-blocking immunity in chickens: I. Comparative immunogenicity of gametocyte- and gamete-containing preparations. Exp Parasitol 47: pp. 185-193 CrossRef
    12. Beetsma, AL, van de Wiel, TJJM, Sauerwein, RW, Eling, WMC (1998) Plasmodium berghei ANKA: purification of large numbers of infectious gametocytes. Exp Parasitol 88: pp. 69-72 CrossRef
    13. Lal, K, Prieto, JH, Elizabeth, B, Sanya, J, Sanderson John, R, Yates, III, Jonathan, M, Wastling Fiona, M, Tomley Sinden, RE (2009) Characterisation of Plasmodium invasive organelles; an ookinete microneme proteome. Proteomics 9: pp. 1142-1151 CrossRef
    14. Hall, N, Karras, M, Raine, JD, Carlton, JM, Kooij, TWA, Berriman, M, Florens, L, Janssen, CS, Pain, A, Christophides, GK, James, K, Rutherford, K, Harris, B, Harris, D, Churcher, C, Quail, MA, Ormond, D, Doggett, J, Trueman, HE, Mendoza, J, Bidwell, SL, Rajandream, MA, Carucci, DJ, Yates, JR, Kafatos, FC, Janse, CJ, Barrell, B, Turner, CMR, Waters, AP, Sinden, RE (2005) A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307: pp. 82-86 CrossRef
    15. Link, AJ, Eng, J, Schieltz, DM, Carmack, E, Mize, GJ, Morris, DR, Garvik, BM, Yates, JR (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17: pp. 676-682 CrossRef
    16. Bradbury, PC, Trager, W (1968) The fine structure of the mature gametes of Haemoproteus columbae Kruse. J Protozool 15: pp. 89-102 CrossRef
    17. Gatlin, CL, Kleemann, GR, Hays, LG, Link, AJ, Yates, JR (1998) Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry. Anal Biochem 263: pp. 93-101 CrossRef
    18. Washburn, MP, Wolters, D, Yates, JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19: pp. 242-247 CrossRef
    19. Bern, M, Goldberg, D, McDonald, WH, Yates, JR (2004) Automatic quality assessment of peptide tandem mass spectra. Bioinformatics 20: pp. i49-i54 CrossRef
    20. Edwards, N, Wu, X, Tseng, C-W (2009) An unsupervised, model-free, machine-learning combiner for peptide identifications from tandem mass spectra. Clin Proteomics 5: pp. 23-36 CrossRef
    21. Perkins, DN (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: pp. 3551-3567 CrossRef
    22. Geer, LY, Markey, SP, Kowalak, JA, Wagner, L, Xu, M, Maynard, DM, Yang, X, Shi, W, Bryant, SH (2004) Open mass spectrometry search algorithm. J Proteome Res 3: pp. 958-964 CrossRef
    23. Craig, R, Beavis, RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20: pp. 1466-1467 CrossRef
    24. Maclean, B, Jimmy, KE, Ronald, CB, Martin, M (2006) General framework for developing and evaluating database scoring algorithms using the TANDEM search engine. Bioinformatics 22: pp. 2830-2832 CrossRef
    25. Tanner, S, Shu, H, Frank, A, Wang, L-C, Zandi, E, Mumby, M, Pevzner, PA, Bafna, V (2005) InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. Anal Chem 77: pp. 4626-4639 CrossRef
    26. Tabb, DL, Fernando, CG, Chambers, MC (2007) MyriMatch: Highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. J Proteome Res 6: pp. 654-661 CrossRef
    27. Elias, JE, Gygi, SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4: pp. 207-214 CrossRef
    28. Mohien, CU, Hartler, J, Breitwieser, F, Rix, U, Rix, LR, Winter, GE, Thallinger, GG, Bennett, KL, Superti-Furga, G, Trajanoski, Z, Colinge, J (2010) MASPECTRAS 2: An integration and analysis platform for proteomic data. Proteomics 10: pp. 2719-2722 CrossRef
    29. ProteomeXchange consortium [http://proteomecentral.proteomexchange.org]
    30. Vizcaino, JA, Deutsch, EW, Wang, R, Csordas, A, Reisinger, F, Rios, D, Dianes, JA, Sun, Z, Farrah, T, Bandeira, N, Binz, P-A, Xenarios, I, Eisenacher, M, Mayer, G, Gatto, L, Campos, A, Chalkley, RJ, Kraus, H-J, Albar, JP, Martinez-Bartolome, S, Apweiler, R, Omenn, GS, Martens, L, Jones, AR, Hermjakob, H (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32: pp. 223-226 CrossRef
    31. PlasmoDB [http://www.plasmodb.org]
    32. Sanger Institute [http://www.sanger.ac.uk/Projects/Protozoa/]
    33. Bernsel, A, Viklund, H, Falk, J, Lindahl, E, von Heijne, G, Elofsson, A (2008) Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci U S A 105: pp. 7177-7181 CrossRef
    34. Krogh, A, Larsson, B, von Heijne, G, Sonnhammer, EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: pp. 567-580 CrossRef
    35. Bernsel, A, Viklund, H, Hennerdal, A, Elofsson, A (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37: pp. W465-W468 CrossRef
    36. Horton, P, Park, KJ, Obayashi, T, Fujita, N, Harada, H, Adams-Collier, CJ, Nakai, K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35: pp. W585-W587 CrossRef
    37. Briesemeister, S, Blum, T, Brady, S, Lam, Y, Kohlbacher, O, Shatkay, H (2009) SherLoc2: a high-accuracy hybrid method for predicting subcellular localization of proteins. J Proteome Res 8: pp. 5363-5366 CrossRef
    38. Garg, A, Raghava, G (2008) ESLpred2: improved method for predicting subcellular localization of eukaryotic proteins. BMC Bioinformatics 9: pp. 503 CrossRef
    39. Chou, KC, Shen, HB (2010) A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0. PLoS One 5: pp. e9931 CrossRef
    40. Yu, CS, Chen, YC, Lu, CH, Hwang, JK (2006) Prediction of protein subcellular localization. Proteins 64: pp. 643-651 CrossRef
    41. Altschul, SF, Madden, TL, Sch眉ffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: pp. 3389-3402 CrossRef
    42. Punta, M, Coggill, PC, Eberhardt, RY, Mistry, J, Tate, J, Boursnell, C, Pang, N, Forslund, K, Ceric, G, Clements, J, Heger, A, Holm, L, Sonnhammer, ELL, Eddy, SR, Bateman, A, Finn, RD (2012) The Pfam protein families database. Nucleic Acids Res 40: pp. D290-D301 CrossRef
    43. Hunter, S, Jones, P, Mitchell, A, Apweiler, R, Attwood, TK, Bateman, A, Bernard, T, Binns, D, Bork, P, Burge, S, de Castro, E, Coggill, P, Corbett, M, Das, U, Daugherty, L, Duquenne, L, Finn, RD, Fraser, M, Gough, J, Haft, D, Hulo, N, Kahn, D, Kelly, E, Letunic, I, Lonsdale, D, Lopez, R, Madera, M, Maslen, J, McAnulla, C, McDowall, J (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40: pp. D306-D312 CrossRef
    44. Wass, MN, Sternberg, MJ (2008) ConFunc鈥揻unctional annotation in the twilight zone. Bioinformatics 24: pp. 798-806 CrossRef
    45. Hawkins, T, Luban, S, Kihara, D (2006) Enhanced automated function prediction using distantly related sequences and contextual association by PFP. Protein Sci 15: pp. 1550-1556 CrossRef
    46. Lobley, AE, Nugent, T, Orengo, CA, Jones, DT (2008) FFPred: an integrated feature-based function prediction server for vertebrate proteomes. Nucleic Acids Res 36: pp. W297-W302 CrossRef
    47. Kelley, LA, Sternberg, MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4: pp. 363-371 CrossRef
    48. Bairoch, A (2000) The ENZYME database in 2000. Nucleic Acids Res 28: pp. 304-305 CrossRef
    49. Alexa, A, Rahnenfuhrer, J, Lengauer, T (2006) Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22: pp. 1600-1607 CrossRef
    50. Gentleman, RC, Carey, VJ, Bates, DM, Bolstad, B, Dettling, M, Dudoit, S, Ellis, B, Gautier, L, Ge, YC, Gentry, J, Hornik, K, Hothorn, T, Huber, W, Iacus, S, Irizarry, R, Leisch, F, Li, C, Maechler, M, Rossini, AJ, Sawitzki, G, Smith, C, Smyth, G, Tierney, L, Yang, JYH, Zhang, JH (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: pp. R80 CrossRef
    51. Benjamini, Y, Yekutieli, D (2001) The control of the false discovery rate in multiple testing under dependency. Annu Stat 29: pp. 1165-1188 CrossRef
    52. Janse, CJ, Franke-Fayard, B, Mair, GR, Ramesar, J, Thiel, C, Engelmann, S, Matuschewski, K, van Gemert, GJ, Sauerwein, RW, Waters, AP (2006) High efficiency transfection of Plasmodium berghei facilitates novel selection procedures. Mol Biochem Parasitol 145: pp. 60-70 CrossRef
    53. Billker, O, Dechamps, S, Tewari, R, Wenig, G, Franke-Fayard, B, Brinkmann, V (2004) Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 117: pp. 503-514 CrossRef
    54. Liu, YJ, Tewari, R, Ning, J, Blagborough, AM, Garbom, S, Pei, JM, Grishin, NV, Steele, RE, Sinden, RE, Snell, WJ, Billker, O (2008) The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes Dev 22: pp. 1051-1068 CrossRef
    55. Tewari, R, Dorin, D, Moon, R, Doerig, C, Billker, O (2005) An atypical mitogen-activated protein kinase controls cytokinesis and flagellar motility during male gamete formation in a malaria parasite. Mol Microbiol 58: pp. 1253-1263 CrossRef
    56. Eksi, S, Williamson, KC (2002) Male-specific expression of the paralog of malaria transmission-blocking target antigen Pfs230, PfB0400w. Mol Biochem Parasitol 122: pp. 127-130 CrossRef
    57. van Dijk, MR, Janse, CJ, Thompson, J, Waters, AP, Braks, JAM, Dodemont, HJ, Stunnenberg, HG, van Gemert, G-J, Sauerwein, RW, Eling, W (2001) A central role for P48/45 in malaria parasite male gamete fertility. Cell 104: pp. 153-164 CrossRef
    58. Eksi, S, Czesny, B, van Gemert, GJ, Sauerwein, RW, Eling, W, Williamson, KC (2006) Malaria transmission-blocking antigen, Pfs230, mediates human red blood cell binding to exflagellating male parasites and oocyst production. Mol Microbiol 61: pp. 991-998 CrossRef
    59. Lal, K, Delves, MJ, Bromley, E, Wastling, JM, Tomley, FM, Sinden, RE (2009) Plasmodium male development gene-1 (mdv-1) is important for female sexual development and identifies a polarised plasma membrane during zygote development. Int J Parasitol 39: pp. 755-761 CrossRef
    60. Talman, AM, Lacroix, C, Marques, SR, Blagborough, AM, Carzaniga, R, M茅nard, R, Sinden, RE (2011) PbGEST mediates malaria transmission to both mosquito and vertebrate host. Mol Microbiol 82: pp. 462-474 CrossRef
    61. Straschil, U, Talman, AM, Ferguson, DJ, Bunting, KA, Xu, Z, Bailes, E, Sinden, RE, Holder, AA, Smith, EF, Coates, JC, Tewari, R (2010) The Armadillo repeat protein PF16 is essential for flagellar structure and function in Plasmodium male gametes. PLoS One 5: pp. e12901 CrossRef
    62. Deligianni, E, Morgan, RN, Bertuccini, L, Kooij, TW, Laforge, A, Nahar, C, Poulakakis, N, Sch眉ler, H, Louis, C, Matuschewski, K, Siden-Kiamos, I (2011) Critical role for a stage-specific actin in male exflagellation of the malaria parasite. Cell Microbiol 13: pp. 1714-1730 CrossRef
    63. Slavic, K, Straschil, U, Reininger, L, Doerig, C, Morin, C, Tewari, R, Krishna, S (2010) Life cycle studies of the hexose transporter of Plasmodium species and genetic validation of their essentiality. Mol Microbiol 75: pp. 1402-1413 CrossRef
    64. Joet, T, Eckstein-Ludwig, U, Morin, C, Krishna, S (2003) Validation of the hexose transporter of Plasmodium falciparum as a novel drug target. Proc Natl Acad Sci U S A 100: pp. 7476-7479 CrossRef
    65. van Schalkwyk, DA, Priebe, W, Saliba, KJ (2008) The inhibitory effect of 2-halo derivatives of D-glucose on glycolysis and on the proliferation of the human malaria parasite Plasmodium falciparum. J Pharmacol Exp Ther 327: pp. 511-517 CrossRef
    66. Vaidya, AB, Morrisey, J, Plowe, CV, Kaslow, DC, Wellems, TE (1993) Unidirectional dominance of cytoplasmic inheritance in 2 genetic crosses of Plasmodium falciparum. Mol Cell Biol 13: pp. 7349-7357
    67. Krisfalusi, M, Miki, K, Magyar, PL, O鈥橞rien, DA (2006) Multiple glycolytic enzymes are tightly bound to the fibrous sheath of mouse spermatozoa. Biol Reprod 75: pp. 270-278 CrossRef
    68. Mitchell, BF, Pedersen, LB, Feely, M, Rosenbaum, JL, Mitchell, DR (2005) ATP Production in Chlamydomonas reinhardtii flagella by glycolytic enzymes. Mol Biol Cell 16: pp. 4509-4518 CrossRef
    69. Ford, WCL (2006) Glycolysis and sperm motility: does a spoonful of sugar help the flagellum go round?. Hum Reprod Update 12: pp. 269-274 CrossRef
    70. Oberholzer, M, Bregy, P, Marti, G, Minca, M, Peier, M, Seebeck, T (2007) Trypanosomes and mammalian sperm: one of a kind?. Trends Parasitol 23: pp. 71-77 CrossRef
    71. Tombes, RM, Shapiro, BM (1985) Metabolite channeling: A phosphorylcreatine shuttle to mediate high energy phosphate transport between sperm mitochondrion and tail. Cell 41: pp. 325-334 CrossRef
    72. Aikawa, M, Carter, R, Ito, Y, Nijhout, MM (1984) New observations on gametogenesis, fertilization, and zygote transformation in Plasmodium gallinaceum. J Protozool 31: pp. 403-413 CrossRef
    73. Aikawa, M, Huff, CG, Strome, CPA (1970) Morphological study of microgametogenesis of Leucocytozoon simondi. J Ultrastruct Res 32: pp. 43-68 CrossRef
    74. Aikawa, M, Sterling, C (1974) High-voltage electron-microscopy on microgametogenesis of Haemoproteus columbae. Z Zellforsch Mikrosk Anat 147: pp. 353-360 CrossRef
    75. Sinden, RE Cell Biology. In: Killick-Kendrick, R eds. (1980) Rodent Malaria. Academic Press, London, pp. 85-169
    76. Pfister, K, Fay, R, Witman, G (1982) Purification and polypeptide composition of dynein ATPases from Chlamydomonas flagella. Cell Motil 2: pp. 525-547 CrossRef
    77. Yang, P, Diener, DR, Yang, C, Kohno, T, Pazour, GJ, Dienes, JM, Agrin, NS, King, SM, Sale, WS, Kamiya, R, Rosenbaum, JL, Witman, GB (2006) Radial spoke proteins of Chlamydomonas flagella. J Cell Sci 119: pp. 1165-1174 CrossRef
    78. Baron, DM, Kabututu, ZP, Hill, KL (2007) Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement. J Cell Sci 120: pp. 1513-1520 CrossRef
    79. Daher, W, Pierrot, C, Kalamou, H, Pinder, JC, Margos, G, Dive, D, Franke-Fayard, B, Janse, CJ, Khalife, J (2010) Plasmodium falciparum dynein light chain 1 interacts with actin/myosin during blood stage development. J Biol Chem 285: pp. 20180-20191 CrossRef
    80. King, SM (2000) The dynein microtubule motor. Biochim Biophys Acta 1496: pp. 60-75 CrossRef
    81. Sakato, M, King, SM (2004) Design and regulation of the AAA鈥?鈥塵icrotubule motor dynein. J Struct Biol 146: pp. 58-71 CrossRef
    82. Wickstead, B, Gull, K (2006) A 鈥淗olistic鈥?kinesin phylogeny reveals new kinesin families and predicts protein functions. Mol Biol Cell 17: pp. 1734-1743 CrossRef
    83. Gupta, ML, Carvalho, P, Roof, DM, Pellman, D (2006) Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat Cell Biol 8: pp. 913-923 CrossRef
    84. Stumpff, J, von Dassow, G, Wagenbach, M, Asbury, C, Wordeman, L (2008) The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev Cell 14: pp. 252-262 CrossRef
    85. Dawson, SC, Sagolla, MS, Mancuso, JJ, Woessner, DJ, House, SA, Fritz-Laylin, L, Cande, WZ (2007) Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot Cell 6: pp. 2354-2364 CrossRef
    86. Fox, L, Sawin, K, Sale, W (1994) Kinesin-related proteins in eukaryiotic flagella. J Cell Sci 107: pp. 1545-1550
    87. Yokoyama, R, O鈥橳oole, E, Ghosh, S, Mitchell, D (2004) Regulation of flagellar dynein activity by a central pair kinesin. Proc Natl Acad Sci U S A 101: pp. 17398-17403 CrossRef
    88. Smith, EF, Lefebvre, PA (1997) The role of central apparatus components in flagellar motility and microtubule assembly. Cell Motil 38: pp. 1-8 CrossRef
  • 刊物主题:Parasitology; Infectious Diseases; Tropical Medicine;
  • 出版者:BioMed Central
  • ISSN:1475-2875
文摘
Background Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. Methods Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. Results 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. Conclusions This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700