用户名: 密码: 验证码:
Application of multifractal models to identify geochemical anomalies in Zarshuran Au deposit, NW Iran
详细信息    查看全文
  • 作者:Ahad Nazarpour (1)
    Nematolah Rashidnejad Omran (2)
    Ghodratolah Rostami Paydar (3)

    1. Department of Geology
    ; North Tehran Branch ; Islamic Azad University ; Tehran ; Iran
    2. Department of Geology
    ; Tarbiat Modares University ; Tehran ; Iran
    3. Department of Geology
    ; Ahvaz Branch ; Islamic Azad University ; Ahvaz ; Iran
  • 关键词:Fractal ; Concentration ; area method ; Number ; size method ; Zarshuran ; Iran
  • 刊名:Arabian Journal of Geosciences
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:8
  • 期:2
  • 页码:877-889
  • 全文大小:13,474 KB
  • 参考文献:1. Afzal, P, Khakzad, A, Moarefvand, P, Rashidnejad Omran, N, Esfandiari, B, Fadakar Alghalandis, Y (2010) Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran. J Geochem Explor 104: pp. 34-46 CrossRef
    2. Afzal, P, Fadakar Alghalandis, Y, Khakzad, A, Moarefvand, P, Rashidnejad Omran, N (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration鈥搗olume modeling. J Geochem Explor 108: pp. 220-232 CrossRef
    3. Agterberg, FP (1995) Multifractal modeling of the sizes and grades of giant and supergiant deposits. Int Geol Rev 37: pp. 1-8 CrossRef
    4. Agterberg FP, Cheng Q, Wright DF (1993) Fractal modeling of mineral deposits. In: Elbrond J, Tang, X (eds) 24th APCOM symposium proceeding, Montreal, Canada, pp 43鈥?3
    5. Ali, K, Cheng, Q, Zhijun, C (2007) Multifractal power spectrum and singularity analysis for modelling stream sediment geochemical distribution patterns to identify anomalies related to gold mineralization in Yunnan Province, South China. Geochem Explor Environ Anal 7: pp. 293-301 CrossRef
    6. Asadi Harooni, H, Voncken, JHL, Kuhnel, RA, Hale, M (2000) Petrography, mineralogy and geochemistry of the Zarshuran gold deposit and implications for ore genesis. Miner Depos 52: pp. 128-142
    7. Box, G, Cox, D (1964) An analysis of transformations. J R Stat Soc Ser B Methodol 26: pp. 211-252
    8. Carranza, EJM (2008) Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of exploration and environmental geochemistry vol 11. Elsevier, Amsterdam
    9. Carranza, EJM (2010) Mapping of anomalies in continous and discrete fields of stream sediment geochemical landscapes. Geochem Explor Environ Anal 10: pp. 71-187
    10. Cheng Q (2004) A new model for quantifying anisotropic scale variance and for decomposition of mixing patterns. Math Geol:345鈥?60
    11. Cheng, Q (2012) Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. J Geochem Explor 122: pp. 55-70 CrossRef
    12. Cheng, Q, Agterberg, FP (1996) Multifractal modeling and spatial statistics. Math Geol 28: pp. 1-16 CrossRef
    13. Cheng, Q, Li, Q (2002) A fractal concentration鈥揳rea method for assigning a color palette for image representation. Comput Geosci 28: pp. 567-575 CrossRef
    14. Cheng, Q, Agterberg, FP, Ballantyne, SB (1994) The separation of geochemical anomalies from background by fractalmethods. J Geochem Explor 51: pp. 109-130 CrossRef
    15. Cheng, Q, Ping, Q, Kenny, F (1997) Statistical and fractal analysis of surface stream patterns in the Oak Ridges Moraine, Ontario, Canada. International Association of Mathematica lst Geology Meeting, Barcelona
    16. Darabi-Golestan, F, Ghavami-Riabi, R, Khalokakaie, R, Asadi-Haroni, H, Seyedrahimi-Nyaragh, M (2012) Interpretation of lithogeochemical and geophysical data to identify the buried mineralized area in Cu-Au porphyry of Dalli-Northern Hill. Arab J Geosci.
    17. Deng, J, Wang, Q, Yang, L, Wang, Y, Gong, Q, Liu, H (2010) Delineation and explanation of geochemical anomalies using fractal models in the Heqing area, Yunnan Province, China. J Geochem Explor 105: pp. 95-105 CrossRef
    18. Ford, A, Blenkinsop, TC (2008) Evaluation geological complexity and complexity gradients as control on copper mineralization, Mt Isa Inlier. Aust J Earth Sci 55: pp. 13-23 CrossRef
    19. Ga艂uszka, A (2007) A review of geochemical background concepts and an example using data from Poland. Environ Geol 56: pp. 861-870 CrossRef
    20. Goncalves, MA, Vairinho, M, Oliveira, V (2001) Characteraization of geochemical distribution using multifractal models. Math Geol 1: pp. 41-46 CrossRef
    21. Goncalves, MA, Antonio, M, Oliveira, V (2001) Geochemical anomaly separation by multifractal modeling. J Geochem Explor 72: pp. 91-114 CrossRef
    22. Govett, GJS, Goodfellow, WD, Chapman, RP, Chork, CY (1975) Exploration geochemistry distribution of elements and recognition of anomalies. Math Geol 7: pp. 415-446 CrossRef
    23. Hashemi, M, Afzal, P (2012) Identification of geochemical anomalies by using of number鈥搒ize (N鈥揝) fractal model in Bardaskan area, NE Iran. Arab J Geosci.
    24. Hassanpour, S, Afzal, P (2011) Application of concentration鈥搉umber (C鈥揘) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system NW Iran. Arab J Geosci.
    25. Hawkes, RAW, Webb, HE (1962) Geochemistry in mineral exploration. Academic, New York
    26. Jian, B, Porwal, A, Hart, C, Ford, A, Yu, L (2010) Mapping geochemical singularity using multifractal analysis: application to anomaly definition on strean sediments data from Funin Sheet, Yunnan, China. J Geochem Explor 45: pp. 1-11
    27. Johnson, N (1949) Systems of frequency curves generated by methods of translation. Biometrika 36: pp. 149-176 CrossRef
    28. Karimi M (1993) The study of petrology, mineralogy, and genesis of Au-As Zarshuran deposit, Takab. Unpublished MS thesis, Tarbiat Moalem University, Tehran, Iran
    29. Li, C, Xu, Y, Jiang, X (1994) The fractal model of mineral deposits. Geol Zhejiang 10: pp. 25-32
    30. Li, C, Ma, T, Shi, J (2003) Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background. J Geochem Explor 77: pp. 167-175 CrossRef
    31. Mandelbrot, B (1983) The fractal geometry. Freeman, New York
    32. Mehrabi B (1997) Genesis of Zarshuran gold deposit, NW Iran. Unpublished PhD thesis, University of Leeds, Leeds, UK
    33. Mehrabi, B, Yardly, BWD, Cann, JR (1999) Sediment-hosted disseminated gold mineralisation at Zarshuran, NW Iran. Miner Depos 34: pp. 673-696 CrossRef
    34. Miesch, A (1981) Estimation of the geochemical threshold and its statistical significance. J Geochem Explor 16: pp. 49-76 CrossRef
    35. Mohajar, G, Parsaei, H, Fallah, N, Madani, F (2004) Mercury exploration in Saein Dezh-Takab area, Tehran, Ministryof mines and metals of Iran. Environ Geol 46: pp. 796-807 CrossRef
    36. Mohammadi, A, Khakzad, A, Rashidnejad Omran, N, Mahvi, MR, Moarefvand, P, Afzal, P (2012) Application of number鈥搒ize (N鈥揝) fractal model for separation of mineralized zones in Dareh-Ashki gold deposit, Muteh Complex, Central Iran. Arab J Geosci.
    37. Rafiee A (2005) Separating geochemical anomalis in stram sediment media by appling combination of fractal concentration-area model and multivariate analysis (case study: Jeal-Barez 1:100000 sheet, Iran). 20th world mining congress, pp 641鈥?70
    38. Sadeghi B (2012) Application of concentration-number (C-N) fractal method to outline mineralized zones in the Zaghia Iron Ore Deposit, Bafq, Anomaly 2C. Unpublished MS thesis, South Tehran Branch, Islamic Azad University, Thran, Iran
    39. Sadeghi, B, Moarefvand, P, Afzal, P, Yasrebi, AB, Daneshvar Saein, L (2012) Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. J Geochem Explor 122: pp. 9-19 CrossRef
    40. Sadeghi B, Afzal P, Moarefvand P, Khodashenas N (2012b) Application of concentration-Area fractal method for determination of Fe geochemical anomalies and the background in Zaghia area, Central Iran. 34th International Geological Congress (IGC), Brisbane, Australia, pp 5鈥?0
    41. Samimi, M (1992) Reconnaissance and perliminary exploration in the Zarshuran area. Kavoshhgaran Engineering Consultant, Tehran
    42. Sanderson, DJ, Roberts, S, Gumiel, P (1994) A fractal relationship between vein thickness and gold grade in drill core from La Codosera, Spain. Econ Geol 89: pp. 168-173 CrossRef
    43. Schwertman, NC, Silva, DR (2007) Identifying outliers with sequential fences. Comput Stat Data Anal 17: pp. 3800-3810 CrossRef
    44. Schwertman, NC, Owens, MA, Adnan, R (2004) A simple more general boxplot method for identifying outliers. Comput Stat Data Anal 15: pp. 65-174
    45. Shamseddin, MM, Peyman, A, Gholinejad, M, Yasrebi, AB, Sadeghi, B (2013) Delineation of geochemical anomalies using factor analysis and multifractal modeling based on stream sediments data in Sarajeh 1:100,000 sheet, Central Iran. Arab J Geosci.
    46. Shapiro, SS, Wilk, MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52: pp. 591-611 CrossRef
    47. Shi, J, Wang, C (1998) Fractal analysis of gold deposits in China: implication for giant deposit exploration. Earth Sci J China Univ Geosci 23: pp. 616-618
    48. Sim, BL, Agterberg, FP, Beaudry, C (1999) Determining the cut off between background and relative base metal contamination levels using multifractal methods. Comput Geosci 25: pp. 1023-1041 CrossRef
    49. Sinclair, AJ (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3: pp. 129-149 CrossRef
    50. Sinclair AJ (1976) Application of probability graphs in mineral exploration. Special publication. Assoc Explor Geochem 4:95聽pp
    51. Sinclair, AJ (1991) A fundamental approach to threshold estimation in exploration geochemistry, probability plots revisited. J Geochem Explor 41: pp. 1-22 CrossRef
    52. Stanley, CR (1988) Comparison of data classification procedures in applied geochemistry using Monte Carlo simulation. University of British Columbia, Vancouver
    53. Stanley, CR, Sinclair, AJ (1989) Comparison of probability plots and gap statistics in the selection of threshold for exploration geochemistry data. J Geochem Explor 32: pp. 355-357 CrossRef
    54. Turcotte, DL (1986) A fractal approach to the relationship between ore grade and tonnage. Econ Geol 18: pp. 1525-1532
    55. Turcotte, DL (1997) Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge CrossRef
    56. Turcotte, DL (2002) Fractals in petrology. Lithos 65: pp. 261-271 CrossRef
    57. Wang, QF, Deng, J, Liu, H, Yang, LQ, Wan, L, Zhang, RZ (2010) Fractal models for ore reserve estimation. Ore Geol Rev 37: pp. 2-14 CrossRef
    58. Wei, S, Pengda, Z (2002) Theoretical study of statistical fractal model with applications to mineral resource prediction. Comput Geosci 28: pp. 369-376 CrossRef
    59. Xu, YG, Cheng, QM (2001) A fractal filtering technique for processing regional geochemical maps for mineral exploration. Geochem Explor Environ Anal 1: pp. 147-156 CrossRef
    60. Zuo, R (2011) Decomposing of mixed pattern of arsenic using fractal model in Gangdese belt, Tibet, China. Appl Geochem 26: pp. S271-S273 CrossRef
    61. Zuo, R (2011) Identifying geochemical anomalies associated with Cu and Pb-Zn skarn mineralization using principal component analysis and spectrum-area fractal modeling in the Gangdese Belt, Tibet (China). J Geochem Explor 111: pp. 13-22 CrossRef
    62. Zuo, R, Cheng, Q, Xia, Q (2009) Application of fractal models to characterization of vertical distribution of geochemical element concentration. J Geochem Explor 102: pp. 37-43 CrossRef
    63. Zuo, R, Carranza, EJM, Cheng, Q (2012) Fractal/multifractal modelling of geochemical exploration data. J Geochem Explor 122: pp. 1-3 CrossRef
    64. Zuo, R, Xia, Q, Zhang, D (2013) A compersion study of the C-A and S-A models with singularity analysis to identify geochemical anomalies in covered areas. Appl Geochem 23: pp. 165-172 CrossRef
  • 刊物类别:Earth and Environmental Science
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-7538
文摘
The identification and separation of soil geochemical anomalies using the concentration-number (C-N) and concentration-area (C-A) methods was conducted at the Zarshuran Carlin-type Au deposit, NW Iran. Log-log elemental plots fitted with straight lines show C-N and C-A relationships of Au, As, Sb and Cu. The thresholds obtained from the two methods are similar. Element concentrations can be divided into three segments that correlate with a particular rock type including mafic rocks, serpentine schist (within the Iman Khan Anticline), Ghaldagh limestone and Zarshuran shale units. Various structural features and corresponding alteration show that geologic structures play an important role in the discrimination of geochemical anomalies and element distribution in soils.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700