用户名: 密码: 验证码:
Toxoplasma gondii prevalent in China induce weaker apoptosis of neural stem cells C17.2 via endoplasmic reticulum stress (ERS) signaling pathways
详细信息    查看全文
文摘
Background Toxoplasma gondii, an obligate intracellular pathogen, has a strong affinity for the nervous system. TgCtwh3, a representative Chinese 1 Toxoplasma strain prevalent in China, has the polymorphic features of the effectors ROP16I/III with type I and GRA15II with type II Toxoplasma strains. The interaction of this atypical strain with host cells remains extremely elusive. Methods Using a transwell system, neural stem cells C17.2 were co-cultured with the tachyzoites of TgCtwh3 or standard type I RH strain. The apoptosis levels of C17.2 cells and the expression levels of related proteins in the endoplasmic reticulum stress (ERS)-mediated pathway were detected by flow cytometry and Western blotting. Results The apoptosis level of C17.2 cells co-cultured with TgCtwh3 had a significant increase compared to the negative control group; however, the apoptosis level in the TgCtwh3 group was significantly lower than that in the RH co-culture group. Western blotting analyses reveal that, after the C17.2 cells were co-cultured with TgCtwh3 and RH tachyzoites, the expression levels of caspase-12, CHOP and p-JNK in the cells increased significantly when compared to the control groups. After the pretreatment of Z-ATAD-FMK, an inhibitor of caspase-12, the apoptosis level of the C17.2 cells co-cultured with TgCtwh3 or RH tachyzoites had an apparent decline, and correspondingly, the expression levels of those related proteins were notably decreased. Conclusions Our findings suggest that TgCtwh3 may induce the apoptosis of the C17.2 cells by up-regulation of caspase-12, CHOP, and p-JNK, which are associated with ERS signaling pathways. This work contributes to better understanding the possible mechanism of brain pathology induced by T. gondii Chinese 1 isolates prevalent in China, and also reveals the potential value of ERS inhibitors to treat such related diseases in the future.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700