用户名: 密码: 验证码:
Transcriptome analysis of northern elephant seal (Mirounga angustirostris) muscle tissue provides a novel molecular resource and physiological insights
详细信息    查看全文
  • 作者:Jane I Khudyakov (1)
    Likit Preeyanon (2)
    Cory D Champagne (3)
    Rudy M Ortiz (4)
    Daniel E Crocker (1)

    1. Department of Biology
    ; Sonoma State University ; 1801 E Cotati Ave ; Rohnert Park ; CA ; 94928 ; USA
    2. Michigan State University
    ; Microbiology and Molecular Genetics ; 567 Wilson Rd ; East Lansing ; MI ; 48824 ; USA
    3. National Marine Mammal Foundation
    ; Conservation and Biological Research Program ; 224 0Shelter Island Drive ; San Diego ; CA ; 92106 ; USA
    4. University of California
    ; Merced ; School of Natural Sciences ; 5200 North Lake Rd ; Merced ; CA ; 95343 ; USA
  • 关键词:Transcriptome ; de novo assembly ; Pinniped ; Stress ; Cloud computing
  • 刊名:BMC Genomics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:1,064 KB
  • 参考文献:1. Johnson SC, Browman HI, Hoffmann GE, Place SP, Dupont S, Wilson K, et al. Introducing genomics, proteomics and metabolomics in marine ecology. Mar Ecol Prog Ser. 2007;332:247鈥?.
    2. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57鈥?3. CrossRef
    3. Helm RR, Siebert S, Tulin S, Smith J, Dunn CW. Characterization of differential transcript abundance through time during / Nematostella vectensis development. BMC Genomics. 2013;14:266. CrossRef
    4. Wall CE, Cozza S, Riquelme CA, McCombie WR, Heimiller JK, Marr TG, et al. Whole transcriptome analysis of the fasting and fed Burmese python heart: insights into extreme physiological cardiac adaptation. Physiol Genomics. 2011;43:69鈥?6. CrossRef
    5. Hampton M, Melvin RG, Kendall AH, Kirkpatrick BR, Peterson N, Andrews MT. Deep sequencing the transcriptome reveals seasonal adaptive mechanisms in a hibernating mammal. PLoS One. 2011;6:e27021. CrossRef
    6. S谩nchez CC, Weber GM, Gao G, Cleveland BM, Yao J, Rexroad CE. Generation of a reference transcriptome for evaluating rainbow trout responses to various stressors. BMC Genomics. 2011;12:626. CrossRef
    7. Lenz TL, Eizaguirre C, Rotter B, Kalbe M, Milinski M. Exploring local immunological adaptation of two stickleback ecotypes by experimental infection and transcriptome-wide digital gene expression analysis. Mol Ecol. 2013;22:774鈥?6. CrossRef
    8. Dantzer B, Fletcher QE, Boonstra R, Sheriff MJ. Measures of physiological stress: a transparent or opaque window into the status, management and conservation of species? Conserv Physiol. 2014;2:cou023. CrossRef
    9. Storey KB, Wu CW. Stress response and adaptation: a new molecular toolkit for the 21st century. Comp Biochem Physiol A Mol Integr Physiol. 2013;165:417鈥?8. CrossRef
    10. Cahais V, Gayral P, Tsagkogeorga G, Melo-Ferreira J, Ballenghien M, Weinert L, et al. Reference-free transcriptome assembly in non-model animals from next-generation sequencing data. Mol Ecol Resour. 2012;12:834鈥?5. CrossRef
    11. Sboner A, Mu XJ, Greenbaum D, Auerbach RK, Gerstein MB. The real cost of sequencing: higher than you think! Genome Biol. 2011;12:125. CrossRef
    12. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. / De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494鈥?12. CrossRef
    13. Brown CT, Howe A, Zhang Q, Pyrkosz AB, Brom TH: A reference-free algorithm for computational normalization of shotgun sequencing data. arXiv 2012, arXiv:1203.4802 [q-bio.GN]
    14. Stein LD. The case for cloud computing in genome informatics. Genome Biol. 2010;11:207. CrossRef
    15. Yim HS, Cho YS, Guang X, Kang SG, Jeong JY, Cha SS, et al. Minke whale genome and aquatic adaptation in cetaceans. Nat Genet. 2013;46:88鈥?2. CrossRef
    16. Sun YB, Zhou WP, Liu HQ, Irwin DM, Shen YY, Zhang YP. Genome-wide scans for candidate genes involved in the aquatic adaptation of dolphins. Genome Biol Evol. 2013;5:130鈥?. CrossRef
    17. Zhou X, Sun F, Xu S, Fan G, Zhu K, Liu X, et al. Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations. Nat Commun. 2013;4:1鈥?.
    18. Edwards RA, Haggerty JM, Cassman N, Busch JC, Aguinaldo K, Chinta S, et al. Microbes, metagenomes and marine mammals: enabling the next generation of scientist to enter the genomic era. BMC Genomics. 2013;14:600. CrossRef
    19. Hoffman JI. Gene discovery in the Antarctic fur seal ( / Arctocephalus gazella) skin transcriptome. Mol Ecol Resour. 2011;11:703鈥?0. CrossRef
    20. Hoffman JI, Thorne MA, Trathan PN, Forcada J. Transcriptome of the dead: characterisation of immune genes and marker development from necropsy samples in a free-ranging marine mammal. BMC Genomics. 2013;14:52. CrossRef
    21. Mancia A, Warr GW, Chapman RW. A transcriptomic analysis of the stress induced by capture-release health assessment studies in wild dolphins ( / Tursiops truncatus). Mol Ecol. 2008;17:2581鈥?. CrossRef
    22. Ptitsyn A, Schlater A, Kanatous S. Transformation of metabolism with age and lifestyle in Antarctic seals: a case study of systems biology approach to cross-species microarray experiment. BMC Syst Biol. 2010;4:133. CrossRef
    23. Crocker DE, Champagne CD, Fowler MA, Houser DS. Adiposity and fat metabolism in lactating and fasting northern elephant seals. Adv Nutr. 2014;5:57鈥?4. CrossRef
    24. Champagne CD, Houser DS, Costa DP, Crocker DE. The effects of handling and anesthetic agents on the stress response and carbohydrate metabolism in northern elephant seals. PLoS One. 2012;7:e38442. CrossRef
    25. Champagne CD, Crocker DE, Fowler MA, Houser DS. Fasting physiology of the pinnipeds: the challenges of fasting while maintaining high energy expenditure and nutrient delivery for lactation. In: McCue MD, editor. Comparative Physiology of Fasting, Starvation, and Food Limitation Edited by. Berlin-Heidelberg: Springer; 2012. p. 309鈥?6. CrossRef
    26. Houser DS, Champagne CD, Crocker DE. A non-traditional model of the metabolic syndrome: the adaptive significance of insulin resistance in fasting-adapted seals. Front Endocrinol. 2013;4:164. CrossRef
    27. Meir JU, Champagne CD, Costa DP, Williams CL, Ponganis PJ. Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals. Am J Physiol Regul Integr Comp Physiol. 2009;297:R927鈥?9. CrossRef
    28. V谩zquez-Medina JP, Zenteno-Sav铆n T, Elsner R, Ortiz RM. Coping with physiological oxidative stress: a review of antioxidant strategies in seals. J Comp Physiol B. 2012;182:741鈥?0. CrossRef
    29. V谩zquez-Medina JP, Zenteno-Sav铆n T, Tift MS, Forman HJ, Crocker DE, Ortiz RM. Apnea stimulates the adaptive response to oxidative stress in elephant seal pups. J Exp Biol. 2011;214:4193鈥?00. CrossRef
    30. Tift MS, Ponganis PJ, Crocker DE. Elevated carboxyhemoglobin in a marine mammal, the northern elephant seal. J Exp Biol. 2014;217:1752鈥?. CrossRef
    31. So帽anez-Organis JG, V谩zquez-Medina JP, Crocker DE, Ortiz RM: Prolonged fasting activates hypoxia inducible factors-1伪, 鈭?伪 and -3伪 in a tissue-specific manner in northern elephant seal pups. Gene 2013:1鈥?.
    32. Martinez B, So帽anez-Organis JG, V谩zquez-Medina JP, Viscarra JA, MacKenzie DS, Crocker DE, et al. Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor 尾-1 in a fasting-adapted mammal. J Exp Biol. 2013;216:4647鈥?4. CrossRef
    33. V谩zquez-Medina JP, So帽anez-Organis JG, Rodriguez R, Viscarra JA, Nishiyama A, Crocker DE, et al. Prolonged fasting activates Nrf2 in post-weaned elephant seals. J Exp Biol. 2013;216:2870鈥?. CrossRef
    34. Suzuki M, V谩zquez-Medina JP, Viscarra JA, So帽anez-Organis JG, Crocker DE, Ortiz RM. Activation of systemic, but not local, renin-angiotensin system is associated with upregulation of TNF-伪 during prolonged fasting in northern elephant seal pups. J Exp Biol. 2013;216:3215鈥?1. CrossRef
    35. Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, et al. Using the transcriptome to annotate the genome. Nat Biotechnol. 2002;20:508鈥?2. CrossRef
    36. Yandell M, Ence D. A beginner's guide to eukaryotic genome annotation. Nat Rev Genet. 2012;13:329鈥?2. CrossRef
    37. Ortiz RM, Wade CE, Ortiz CL. Effects of prolonged fasting on plasma cortisol and TH in postweaned northern elephant seal pups. Am J Physiol Regul Integr Comp Physiol. 2001;280:R790鈥?.
    38. Ortiz RM, Houser DS, Wade CE, Ortiz CL. Hormonal changes associated with the transition between nursing and natural fasting in northern elephant seals (Mirounga angustirostris). Gen Comp Endocr. 2003;130:78鈥?3. CrossRef
    39. Houser DS, Champagne CD, Crocker DE. Lipolysis and glycerol gluconeogenesis in simultaneously fasting and lactating northern elephant seals. Am J Physiol Regul Integr Comp Physiol. 2007;293:R2376鈥?1. CrossRef
    40. Viscarra JA, V谩zquez-Medina JP, Crocker DE, Ortiz RM. Glut4 is upregulated despite decreased insulin signaling during prolonged fasting in northern elephant seal pups. Am J Physiol Regul Integr Comp Physiol. 2011;300:R150鈥?. CrossRef
    41. Madliger CL, Love OP. The need for a predictive, context-dependent approach to the application of stress hormones in conservation. Conserv Biol. 2014;28:283鈥?. CrossRef
    42. Ensminger DC, Somo DA, Houser DS, Crocker DE. Metabolic responses to adrenocorticotropic hormone (ACTH) vary with life-history stage in adult male northern elephant seals. Gen Comp Endocr. 2014;204:150鈥?. CrossRef
    43. Fusaro VA, Patil P, Gafni E, Wall DP, Tonellato PJ. Biomedical cloud computing with Amazon Web Services. PLoS Comput Biol. 2011;7:e1002147. CrossRef
    44. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114鈥?0. CrossRef
    45. De Miranda MA, Schlater AE, Green TL, Kanatous SB. In the face of hypoxia: myoglobin increases in response to hypoxic conditions and lipid supplementation in cultured Weddell seal skeletal muscle cells. J Exp Biol. 2012;215:806鈥?3. CrossRef
    46. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644鈥?2. CrossRef
    47. Zhao Q-Y, Wang Y, Kong Y-M, Da L, Li X, Hao P. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinformatics. 2011;12:S2. CrossRef
    48. Hornett EA, Wheat CW. Quantitative RNA-Seq analysis in non-model species: assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species. BMC Genomics. 2012;13:1. CrossRef
    49. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. CrossRef
    50. O'Neil ST, Emrich SJ. Assessing / de novo transcriptome assembly metrics for consistency and utility. BMC Genomics. 2013;14:465. CrossRef
    51. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438:803鈥?9. CrossRef
    52. Yang Y, Smith SA. Optimizing / de novo assembly of short-read RNA-seq data for phylogenomics. BMC Genomics. 2013;14:328. CrossRef
    53. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150鈥?. CrossRef
    54. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658鈥?. CrossRef
    55. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14. CrossRef
    56. Aoki-Kinoshita KF, Kanehisa M. Gene annotation and pathway mapping in KEGG. Methods Mol Biol. 2007;396:71鈥?1. CrossRef
    57. Li B, Dewey CN. RSEM: accurate transcript quantification fromRNA-Seq data with or without a reference. BMC Bioinformatics. 2011;12:323. CrossRef
    58. Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BMG, et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics. 2013;29:1035鈥?3. CrossRef
    59. Kuo T, Harris CA, Wang JC. Metabolic functions of glucocorticoid receptor in skeletal muscle. Mol Cell Endocrinol. 2013;380:79鈥?8. CrossRef
    60. Balamurugan K, Sterneck E. The many faces of C/EBP未 and their relevance for inflammation and cancer. Int J Biol Sci. 2013;9:917鈥?3. CrossRef
    61. Allen DL, Cleary AS, Hanson AM, Lindsay SF, Reed JM. CCAAT/enhancer binding protein-未 expression is increased in fast skeletal muscle by food deprivation and regulates myostatin transcription / in vitro. Am J Physiol Regul Integr Comp Physiol. 2010;299:R1592鈥?01. CrossRef
    62. Crocker DE, Ortiz RM, Houser DS, Webb PM, Costa DP. Hormone and metabolite changes associated with extended breeding fasts in male northern elephant seals ( / Mirounga angustirostris). Comp Biochem Physiol A Physiol. 2012;161:388鈥?4. CrossRef
    63. Kelso EJ, Champagne CD, Tift MS, Houser DS, Crocker DE. Sex differences in fuel use and metabolism during development in fasting juvenile northern elephant seals. J Exp Biol. 2012;215:2637鈥?5. CrossRef
    64. Chen F, Mackey AJ, Vermunt JK, Roos DS. Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS One. 2007;2:e383. CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background The northern elephant seal, Mirounga angustirostris, is a valuable animal model of fasting adaptation and hypoxic stress tolerance. However, no reference sequence is currently available for this and many other marine mammal study systems, hindering molecular understanding of marine adaptations and unique physiology. Results We sequenced a transcriptome of M. angustirostris derived from muscle sampled during an acute stress challenge experiment to identify species-specific markers of stress axis activation and recovery. De novo assembly generated 164,966 contigs and a total of 522,699 transcripts, of which 68.70% were annotated using mouse, human, and domestic dog reference protein sequences. To reduce transcript redundancy, we removed highly similar isoforms in large gene families and produced a filtered assembly containing 336,657 transcripts. We found that a large number of annotated genes are associated with metabolic signaling, immune and stress responses, and muscle function. Preliminary differential expression analysis suggests a limited transcriptional response to acute stress involving alterations in metabolic and immune pathways and muscle tissue maintenance, potentially driven by early response transcription factors such as Cebpd. Conclusions We present the first reference sequence for Mirounga angustirostris produced by RNA sequencing of muscle tissue and cloud-based de novo transcriptome assembly. We annotated 395,102 transcripts, some of which may be novel isoforms, and have identified thousands of genes involved in key physiological processes. This resource provides elephant seal-specific gene sequences, complementing existing metabolite and protein expression studies and enabling future work on molecular pathways regulating adaptations such as fasting, hypoxia, and environmental stress responses in marine mammals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700