用户名: 密码: 验证码:
A decisional account of subjective inflation of visual perception at the periphery
详细信息    查看全文
  • 作者:Guillermo Solovey (1) (2) (3) (4)
    Guy Gerard Graney (1)
    Hakwan Lau (1) (5)

    1. Department of Psychology
    ; Columbia University ; New York ; NY ; USA
    2. Instituto de C谩lculo
    ; FCEyN ; Universidad de Buenos Aires ; Intendente G眉iraldes 2160 ; Ciudad Universitaria ; Pabell贸n II ; Buenos Aires ; C1428EGA ; Argentina
    3. Laboratorio de Neurociencia Integrativa
    ; Buenos Aires ; Argentina
    4. CONICET
    ; Buenos Aires ; Argentina
    5. Department of Psychology
    ; University of California Los Angeles ; Los Angeles ; CA ; USA
  • 关键词:Peripheral vision ; Subjective perception ; Perceptual decision making ; Psychophysics ; Signal detection theory
  • 刊名:Attention, Perception, & Psychophysics
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:77
  • 期:1
  • 页码:258-271
  • 全文大小:755 KB
  • 参考文献:1. Alvarez, G. A. (2011). Representing multiple objects as an ensemble enhances visual cognition. / Trends in Cognitive Sciences, 15(3), 122鈥?31. doi:10.1016/j.tics.2011.01.003 CrossRef
    2. Anstis, S. (1998). Picturing peripheral acuity. / Perception, 27(7), 817鈥?25. CrossRef
    3. Azzopardi, P., & Cowey, A. (1993). Preferential representation of the fovea in the primary visual cortex. / Nature, 361(6414), 719鈥?21. doi:10.1038/361719a0 CrossRef
    4. Balas, B., Nakano, L., & Rosenholtz, R. (2009). A summary-statistic representation in peripheral vision explains visual crowding. / Journal of Vision, 9(12), 13.1鈥?8. doi:10.1167/9.12.13 CrossRef
    5. Banks, M. S., Sekuler, A. B., & Anderson, S. J. (1991). Peripheral spatial vision: limits imposed by optics, photoreceptors, and receptor pooling. / Journal of the Optical Society of America A, Optics and Image Science, 8(11), 1775鈥?787. 5" target="_blank" title="It opens in new window">CrossRef
    6. Bisley, J. W. (2011). The neural basis of visual attention. / The Journal of Physiology, 589(Pt 1), 49鈥?7. doi:10.1113/jphysiol.2010.192666 CrossRef
    7. Block, N. (2011). Perceptual consciousness overflows cognitive access. / Trends in Cognitive Sciences, 15(12), 567鈥?75. doi:10.1016/j.tics.2011.11.001 CrossRef
    8. Bosman, C. A., Schoffelen, J.-M., Brunet, N., Oostenveld, R., Bastos, A. M., Womelsdorf, T., 鈥?Fries, P. (2012). Attentional stimulus selection through selective synchronization between monkey visual areas. / Neuron, / 75(5), 875鈥?8. doi:10.1016/j.neuron.2012.06.037
    9. Boucart, M., Moroni, C., Thibaut, M., Szaffarczyk, S., & Greene, M. (2013). Scene categorization at large visual eccentricities. / Vision Research, 86, 35鈥?2. doi:10.1016/j.visres.2013.04.006 CrossRef
    10. Brainard, D. H. (1997). The Psychophysics Toolbox. / Spatial Vision, 10(4), 433鈥?36. 56856897X00357" target="_blank" title="It opens in new window">CrossRef
    11. Bressler, D. W., & Silver, M. A. (2010). Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex. / NeuroImage, 53(2), 526鈥?33. doi:10.1016/j.neuroimage.2010.06.063 CrossRef
    12. Burnham, K. P., & Anderson, D. R. (2002). / Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach (p. 488). Springer.
    13. Cafaro, J., & Rieke, F. (2010). Noise correlations improve response fidelity and stimulus encoding. / Nature, 468(7326), 964鈥?67. doi:10.1038/nature09570 570" target="_blank" title="It opens in new window">CrossRef
    14. Carrasco, M. (2011). Visual attention: The past 25 years. / Vision Research. doi:10.1016/j.visres.2011.04.012
    15. Carrasco, M., & Frieder, K. S. (1997). Cortical magnification neutralizes the eccentricity effect in visual search. / Vision Research, 37(1), 63鈥?2. CrossRef
    16. Cohen, M. A., & Dennett, D. C. (2011). Consciousness cannot be separated from function. / Trends in Cognitive Sciences. doi:10.1016/j.tics.2011.06.008
    17. Curcio, C. A., Sloan, K. R., Kalina, R. E., & Hendrickson, A. E. (1990). Human photoreceptor topography. / The Journal of Comparative Neurology, 292(4), 497鈥?23. doi:10.1002/cne.902920402 CrossRef
    18. Daniel, P. M., & Whitteridge, D. (1961). The representation of the visual field on the cerebral cortex in monkeys. / The Journal of Physiology, 159, 203鈥?21. CrossRef
    19. Dehaene, S., & Changeux, J.-P. (2011). Experimental and theoretical approaches to conscious processing. / Neuron, 70(2), 200鈥?27. doi:10.1016/j.neuron.2011.03.018 CrossRef
    20. DeValois, R. L., & DeValois, K. K. (1988). / Spatial Vision (p. 400). Oxford University Press.
    21. Dorfman, D. D., & Alf, E. (1969). Maximum-likelihood estimation of parameters of signal-detection theory and determination of confidence intervals鈥擱ating-method data. / Journal of Mathematical Psychology, 6(3), 487鈥?96. CrossRef
    22. Eckstein, M. P., Peterson, M. F., Pham, B. T., & Droll, J. A. (2009). Statistical decision theory to relate neurons to behavior in the study of covert visual attention. / Vision Research, 49(10), 1097鈥?128. doi:10.1016/j.visres.2008.12.008 CrossRef
    23. Efron, B., & Tibshirani, R. J. (1994). / An Introduction to the Bootstrap (p. 456). CRC Press.
    24. Gorea, A., & Sagi, D. (2000). Failure to handle more than one internal representation in visual detection tasks. / Proceedings of the National Academy of Sciences of the United States of America, 97(22), 12380鈥?2384. doi:10.1073/pnas.97.22.12380 CrossRef
    25. Green, D. M., & Swets, J. A. (1989). / Signal Detection Theory and Psychophysics (p. 521). Peninsula Pub.
    26. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. / Science (New York, N.Y.), / 220(4598), 671鈥?0. doi:10.1126/science.220.4598.671
    27. Kouider, S., de Gardelle, V., Sackur, J., & Dupoux, E. (2010). How rich is consciousness? The partial awareness hypothesis. / Trends in Cognitive Sciences, 14(7), 301鈥?07. doi:10.1016/j.tics.2010.04.006 CrossRef
    28. Lamme, V. A. F. (2010). How neuroscience will change our view on consciousness. / Cognitive Neuroscience, 1(3), 204鈥?20. doi:10.1080/17588921003731586 588921003731586" target="_blank" title="It opens in new window">CrossRef
    29. Lau, H. (2008). A higher order Bayesian decision theory of consciousness. / Progress in Brain Research, 168, 35鈥?8. CrossRef
    30. Lau, H., & Rahnev, D. A. (2011). The paradoxical negative relationship between attention-related spontaneous neural activity and perceptual decisions. / Journal of Vision, 11(11), 20鈥?0. doi:10.1167/11.11.20 CrossRef
    31. Lau, H., & Rosenthal, D. (2011). Empirical support for higher-order theories of conscious awareness. / Trends in Cognitive Sciences, 15, 365鈥?73. doi:10.1016/j.tics.2011.05.009 5.009" target="_blank" title="It opens in new window">CrossRef
    32. Levi, D. M. (2008). Crowding鈥揳n essential bottleneck for object recognition: a mini-review. / Vision Research, 48(5), 635鈥?54. doi:10.1016/j.visres.2007.12.009 CrossRef
    33. Lima, B., Singer, W., Chen, N.-H., & Neuenschwander, S. (2010). Synchronization dynamics in response to plaid stimuli in monkey V1. / Cerebral Cortex (New York, N.Y.: 1991), / 20(7), 1556鈥?3. doi:10.1093/cercor/bhp218
    34. Ma, W. J. (2010). Signal detection theory, uncertainty, and Poisson-like population codes. / Vision Research, 50(22), 2308鈥?319. doi:10.1016/j.visres.2010.08.035 5" target="_blank" title="It opens in new window">CrossRef
    35. Macmillan, N. A., & Creelman, C. D. (2004). / Detection Theory: A User鈥檚 Guide (p. 512). Psychology Press.
    36. McDonnell, M. D., & Abbott, D. (2009). What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. / PLoS Computational Biology, 5(5), e1000348. doi:10.1371/journal.pcbi.1000348 CrossRef
    37. Morales, J., Solovey, G., Maniscalco, B., Rahnev, D., De Lange, F. P., & Lau, H. (2014). / Low Attention Impairs Optimal Incorporation of Prior Knowledge in Perceptual Decisions. Manuscript submitted for publication.
    38. Mullen, K. T. (1991). Colour vision as a post-receptoral specialization of the central visual field. / Vision Research, 31(1), 119鈥?30. CrossRef
    39. Noorlander, C., Koenderink, J. J., Den Olden, R. J., & Edens, B. W. (1983). Sensitivity to spatiotemporal colour contrast in the peripheral visual field. / Vision Research, 23(1), 1鈥?1. 5-4" target="_blank" title="It opens in new window">CrossRef
    40. O鈥橰egan, J. K. (1992). Solving the 鈥渞eal鈥?mysteries of visual perception: the world as an outside memory. / Canadian Journal of Psychology, 46, 461鈥?88. doi:10.1037/h0084327 CrossRef
    41. Oliva, A. (2005). Gist of the Scene. In L. Itti, G. Rees, & J. Tsotsos (Eds.), / Neurobiology of Attention (pp. 251鈥?56). San Diego: Elsevier. 5731-9/50045-8" target="_blank" title="It opens in new window">CrossRef
    42. Parkes, L., Lund, J., Angelucci, A., Solomon, J. A., & Morgan, M. (2001). Compulsory averaging of crowded orientation signals in human vision. / Nature Neuroscience, 4(7), 739鈥?44. doi:10.1038/89532 532" target="_blank" title="It opens in new window">CrossRef
    43. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. / Spatial Vision, 10(4), 437鈥?42. 56856897X00366" target="_blank" title="It opens in new window">CrossRef
    44. Pelli, D. G., & Tillman, K. A. (2008). The uncrowded window of object recognition. / Nature Neuroscience, 11(10), 1129鈥?135. CrossRef
    45. Pestilli, F., Carrasco, M., Heeger, D. J., & Gardner, J. L. (2011). Attentional enhancement via selection and pooling of early sensory responses in human visual cortex. / Neuron, 72(5), 832鈥?46. doi:10.1016/j.neuron.2011.09.025 5" target="_blank" title="It opens in new window">CrossRef
    46. Posner, M. I. (1980). Orienting of attention. / Quarterly Journal of Experimental Psychology. doi:10.1080/00335558008248231
    47. Rahnev, D. A., Bahdo, L., De Lange, F. P., & Lau, H. (2012a). Pre-Stimulus hemodynamic activity in dorsal attention network is negatively associated with decision confidence in visual perception. / Journal of Neurophysiology, 108(5), 1529鈥?536. doi:10.1152/jn.00184.2012 52/jn.00184.2012" target="_blank" title="It opens in new window">CrossRef
    48. Rahnev, D. A., Maniscalco, B., Graves, T., Huang, E., de Lange, F. P., & Lau, H. (2011). Attention induces conservative subjective biases in visual perception. / Nature Neuroscience, 14(12), 1513鈥?515. doi:10.1038/nn.2948 CrossRef
    49. Rahnev, D. A., Maniscalco, B., Luber, B., Lau, H., & Lisanby, S. H. (2012b). Direct injection of noise to the visual cortex decreases accuracy but increases decision confidence. / Journal of Neurophysiology, 107(6), 1556鈥?563. doi:10.1152/jn.00985.2011 52/jn.00985.2011" target="_blank" title="It opens in new window">CrossRef
    50. Rounis, E., Maniscalco, B., Rothwell, J. C., Passingham, R. E., & Lau, H. (2010). Theta-burst transcranial magnetic stimulation to the prefrontal cortex impairs metacognitive visual awareness. / Cognitive Neuroscience, 1(3), 165鈥?75. doi:10.1080/17588921003632529 588921003632529" target="_blank" title="It opens in new window">CrossRef
    51. Scholl, B. J. (2001). Objects and attention: The state of the art. / Cognition. doi:10.1016/S0010-0277(00)00152-9
    52. Simonotto, E., Riani, M., Seife, C., Roberts, M., Twitty, J., & Moss, F. (1997). Visual Perception of Stochastic Resonance. / Physical Review Letters, 78(6), 1186鈥?189. CrossRef
    53. Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: sustained inattentional blindness for dynamic events. / Perception, 28(9), 1059鈥?074. 52" target="_blank" title="It opens in new window">CrossRef
    54. Simons, D. J., & Levin, D. T. (1997). Change blindness. / Trends in Cognitive Sciences, 1(7), 261鈥?67. CrossRef
    55. Strasburger, H., Rentschler, I., & J眉ttner, M. (2011). Peripheral vision and pattern recognition: A review. / Journal of Vision, 11, 1鈥?2. doi:10.1167/11.5.13.Contents 56856897X00014" target="_blank" title="It opens in new window">CrossRef
    56. Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. / Trends in Cognitive Sciences, 13(9), 403鈥?09. doi:10.1016/j.tics.2009.06.003 CrossRef
    57. Van Pelt, S., & Fries, P. (2013). Visual stimulus eccentricity affects human gamma peak frequency. / NeuroImage, 78, 439鈥?47. doi:10.1016/j.neuroimage.2013.04.040 CrossRef
    58. Virsu, V., N盲s盲nen, R., & Osmoviita, K. (1987). Cortical magnification and peripheral vision. / Journal of the Optical Society of America. A, 4(8), 1568. doi:10.1364/JOSAA.4.001568 568" target="_blank" title="It opens in new window">CrossRef
    59. Watson, A. B., & Pelli, D. G. (1983). QUEST: a Bayesian adaptive psychometric method. / Perception & Psychophysics, 33(2), 113鈥?20. 58/BF03202828" target="_blank" title="It opens in new window">CrossRef
    60. Wyart, V., Nobre, A. C., & Summerfield, C. (2012). Dissociable prior influences of signal probability and relevance on visual contrast sensitivity. / Proceedings of the National Academy of Sciences of the United States of America, 109(9), 3593鈥?598. doi:10.1073/pnas.1120118109 CrossRef
    61. Zak, I., Katkov, M., Gorea, A., & Sagi, D. (2012). Decision criteria in dual discrimination tasks estimated using external-noise methods. / Attention, Perception, & Psychophysics, 74(5), 1042鈥?055. doi:10.3758/s13414-012-0269-0 58/s13414-012-0269-0" target="_blank" title="It opens in new window">CrossRef
    62. Zhang, H., Morvan, C., & Maloney, L. T. (2010). Gambling in the visual periphery: a conjoint-measurement analysis of human ability to judge visual uncertainty. / PLoS Computational Biology, 6(12), e1001023. doi:10.1371/journal.pcbi.1001023 CrossRef
  • 刊物主题:Cognitive Psychology;
  • 出版者:Springer US
  • ISSN:1943-393X
文摘
Human peripheral vision appears vivid compared to foveal vision; the subjectively perceived level of detail does not seem to drop abruptly with eccentricity. This compelling impression contrasts with the fact that spatial resolution is substantially lower at the periphery. A similar phenomenon occurs in visual attention, in which subjects usually overestimate their perceptual capacity in the unattended periphery. We have previously shown that at identical eccentricity, low spatial attention is associated with liberal detection biases, which we argue may reflect inflated subjective perceptual qualities. Our computational model suggests that this subjective inflation occurs because under the lack of attention, the trial-by-trial variability of the internal neural response is increased, resulting in more frequent surpassing of a detection criterion. In the current work, we hypothesized that the same mechanism may be at work in peripheral vision. We investigated this possibility in psychophysical experiments in which participants performed a simultaneous detection task at the center and at the periphery. Confirming our hypothesis, we found that participants adopted a conservative criterion at the center and liberal criterion at the periphery. Furthermore, an extension of our model predicts that detection bias will be similar at the center and at the periphery if the periphery stimuli are magnified. A second experiment successfully confirmed this prediction. These results suggest that, although other factors contribute to subjective inflation of visual perception in the periphery, such as top-down filling-in of information, the decision mechanism may be relevant too.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700