用户名: 密码: 验证码:
Advances in cardiac magnetic resonance imaging of congenital heart disease
详细信息    查看全文
  • 作者:Mieke M. P. Driessen (1) (2) (3)
    Johannes M. P. J. Breur (4)
    Ricardo P. J. Budde (1)
    Joep W. M. van Oorschot (1)
    Roland R. J. van Kimmenade (2)
    Gertjan Tj Sieswerda (2)
    Folkert J. Meijboom (2) (4)
    Tim Leiner (1)

    1. Department of Radiology
    ; University of Utrecht ; University Medical Center Utrecht ; PO Box 85500 ; 3508 GA ; Utrecht ; The Netherlands
    2. Department of Cardiology
    ; University of Utrecht ; University Medical Center Utrecht ; PO Box 85500 ; 3508 GA ; Utrecht ; The Netherlands
    3. The Interuniversity Cardiology Institute of the Netherlands (ICIN) 鈥?Netherlands Heart Institute
    ; PO Box 19258 ; 3501 DG ; Utrecht ; The Netherlands
    4. Department of Pediatric Cardiology
    ; Wilhelmina Children鈥檚 Hospital ; University Medical Center Utrecht ; PO Box 85500 ; 3508 GA ; Utrecht ; The Netherlands
  • 关键词:Cardiovascular magnetic resonance ; Technical advances ; Congenital heart disease ; Child ; Magnetic resonance imaging
  • 刊名:Pediatric Radiology
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:45
  • 期:1
  • 页码:5-19
  • 全文大小:2,416 KB
  • 参考文献:1. Tennant PW, Pearce MS, Bythell M et al (2010) 20-year survival of children born with congenital anomalies: a population-based study. Lancet 375:649鈥?56 CrossRef
    2. van der Bom T, Bouma BJ, Meijboom FJ et al (2012) The prevalence of adult congenital heart disease, results from a systematic review and evidence based calculation. Am Heart J 164:568鈥?75 CrossRef
    3. Wren C, O鈥橲ullivan JJ (2001) Survival with congenital heart disease and need for follow up in adult life. Heart 85:438鈥?43 CrossRef
    4. Towbin JA, Lowe AM, Colan SD et al (2006) Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA 296:1867鈥?876 CrossRef
    5. Nugent AW, Daubeney PE, Chondros P et al (2003) The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med 348:1639鈥?646 CrossRef
    6. Lipshultz SE, Lipsitz SR, Sallan SE et al (2005) Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol 23:2629鈥?636 CrossRef
    7. Hinton DP, Wald LL, Pitts J et al (2003) Comparison of cardiac MRI on 1.5 and 3.0 Tesla clinical whole body systems. Invest Radiol 38:436鈥?42
    8. Dietrich O, Reiser MF, Schoenberg SO (2008) Artifacts in 3-T MRI: physical background and reduction strategies. Eur J Radiol 65:29鈥?5 CrossRef
    9. Gagliardi MG, Bevilacqua M, Di Renzi P et al (1991) Usefulness of magnetic resonance imaging for diagnosis of acute myocarditis in infants and children, and comparison with endomyocardial biopsy. Am J Cardiol 68:1089鈥?091 CrossRef
    10. Abdel-Aty H, Zagrosek A, Schulz-Menger J et al (2004) Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 109:2411鈥?416 CrossRef
    11. Cohen MS, Weisskoff RM, Rzedzian RR et al (1990) Sensory stimulation by time-varying magnetic fields. Magn Reson Med 14:409鈥?14 CrossRef
    12. Budinger TF, Fischer H, Hentschel D et al (1991) Physiological effects of fast oscillating magnetic field gradients. J Comput Assist Tomogr 15:909鈥?14 CrossRef
    13. Pruessmann KP, Weiger M, Scheidegger MB et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952鈥?62 CrossRef
    14. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591鈥?03 CrossRef
    15. Leiner T, Habets J, Versluis B et al (2013) Subtractionless first-pass single contrast medium dose peripheral MR angiography using two-point Dixon fat suppression. Eur Radiol 23:2228鈥?235 CrossRef
    16. Tsao J, Kozerke S (2012) MRI temporal acceleration techniques. J Magn Reson Imaging 36:543鈥?60 CrossRef
    17. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182鈥?195 CrossRef
    18. Vasanawala SS, Chan FP, Newman B et al (2011) Combined respiratory and cardiac triggering improves blood pool contrast-enhanced pediatric cardiovascular MRI. Pediatr Radiol 41:1536鈥?544 CrossRef
    19. Hsiao A, Lustig M, Alley MT et al (2012) Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI. AJR Am J Roentgenol 198:W250鈥?59 CrossRef
    20. Stuber M, Botnar RM, Danias PG et al (1999) Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography. J Am Coll Cardiol 34:524鈥?31 CrossRef
    21. Lai P, Larson AC, Park J et al (2008) Respiratory self-gated four-dimensional coronary MR angiography: a feasibility study. Magn Reson Med 59:1378鈥?385 CrossRef
    22. Stehning C, Bornert P, Nehrke K et al (2005) Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med 54:476鈥?80 CrossRef
    23. Spincemaille P, Nguyen TD, Prince MR et al (2008) Kalman filtering for real-time navigator processing. Magn Reson Med 60:158鈥?68 CrossRef
    24. van Heeswijk RB, Bonanno G, Coppo S et al (2012) Motion compensation strategies in magnetic resonance imaging. Crit Rev Biomed Eng 40:99鈥?19 CrossRef
    25. Vignaux OB, Augui J, Coste J et al (2001) Comparison of single-shot fast spin-echo and conventional spin-echo sequences for MR imaging of the heart: initial experience. Radiology 219:545鈥?50 CrossRef
    26. Karaus A, Merboldt KD, Graessner J et al (2007) Black-blood imaging of the human heart using rapid stimulated echo acquisition mode (STEAM) MRI. J Magn Reson Imaging 26:1666鈥?671 CrossRef
    27. Hernandez RJ, Strouse PJ, Londy FJ et al (2001) Gadolinium-enhanced MR angiography (Gd-MRA) of thoracic vasculature in an animal model using double-dose gadolinium and quiet breathing. Pediatr Radiol 31:589鈥?93 CrossRef
    28. Vogt FM, Theysohn JM, Michna D et al (2013) Contrast-enhanced time-resolved 4D MRA of congenital heart and vessel anomalies: image quality and diagnostic value compared with 3D MRA. Eur Radiol 23:2392鈥?404 CrossRef
    29. Young PM, McGee KP, Pieper MS et al (2013) Tips and tricks for MR angiography of pediatric and adult congenital cardiovascular diseases. AJR Am J Roentgenol 200:980鈥?88 CrossRef
    30. Fenchel M, Saleh R, Dinh H et al (2007) Juvenile and adult congenital heart disease: time-resolved 3D contrast-enhanced MR angiography. Radiology 244:399鈥?10 CrossRef
    31. Dabir D, Naehle CP, Clauberg R et al (2012) High-resolution motion compensated MRA in patients with congenital heart disease using extracellular contrast agent at 3 Tesla. J Cardiovasc Magn Reson 14:75 CrossRef
    32. Naehle CP, Kaestner M, Muller A et al (2010) First-pass and steady-state MR angiography of thoracic vasculature in children and adolescents. JACC Cardiovasc Imaging 3:504鈥?13 CrossRef
    33. Yoon YE, Kitagawa K, Kato S et al (2012) Prognostic value of coronary magnetic resonance angiography for prediction of cardiac events in patients with suspected coronary artery disease. J Am Coll Cardiol 60:2316鈥?322 CrossRef
    34. Kato S, Kitagawa K, Ishida N et al (2010) Assessment of coronary artery disease using magnetic resonance coronary angiography: a national multicenter trial. J Am Coll Cardiol 56:983鈥?91 CrossRef
    35. Greenwood JP, Maredia N, Radjenovic A et al (2009) Clinical evaluation of magnetic resonance imaging in coronary heart disease: the CE-MARC study. Trials 10:62 CrossRef
    36. Bornert P, Koken P, Nehrke K et al (2013) Water/fat-resolved whole-heart Dixon coronary MRA: An initial comparison. Magn Reson Med 54:476鈥?80
    37. Leiner T, Katsimaglis G, Yeh EN et al (2005) Correction for heart rate variability improves coronary magnetic resonance angiography. J Magn Reson Imaging 22:577鈥?82 CrossRef
    38. Jaroni J, Meier R, Beer A et al (2013) Three-dimensional magnetic resonance imaging using single breath-hold k-t BLAST for assessment of global left ventricular functional parameters. Acad Radiol 20:987鈥?94 CrossRef
    39. Parish V, Hussain T, Beerbaum P et al (2010) Single breath-hold assessment of ventricular volumes using 32-channel coil technology and an extracellular contrast agent. J Magn Reson Imaging 31:838鈥?44 CrossRef
    40. Stralen van M, Habets J, Driessen M et al. (2012) Dual breath-hold 3D whole heart cine cardiac MRI: feasibility and initial experience [abstract 3843]. ISMRM
    41. Makowski MR, Wiethoff AJ, Jansen CH et al (2012) Single breath-hold assessment of cardiac function using an accelerated 3D single breath-hold acquisition technique鈥揷omparison of an intravascular and extravascular contrast agent. J Cardiovasc Magn Reson 14:53 CrossRef
    42. Bellenger NG, Gatehouse PD, Rajappan K et al (2000) Left ventricular quantification in heart failure by cardiovascular MR using prospective respiratory navigator gating: comparison with breath-hold acquisition. J Magn Reson Imaging 11:411鈥?17 CrossRef
    43. Coelho-Filho OR, Rickers C, Kwong RY et al (2013) MR myocardial perfusion imaging. Radiology 266:701鈥?15 CrossRef
    44. Ebersberger U, Makowski MR, Schoepf UJ et al (2013) Magnetic resonance myocardial perfusion imaging at 3.0 Tesla for the identification of myocardial ischaemia: comparison with coronary catheter angiography and fractional flow reserve measurements. Eur Heart J Cardiovasc Imaging 14:1174鈥?180 CrossRef
    45. Watkins S, McGeoch R, Lyne J et al (2009) Validation of magnetic resonance myocardial perfusion imaging with fractional flow reserve for the detection of significant coronary heart disease. Circulation 120:2207鈥?213 CrossRef
    46. Cheng AS, Pegg TJ, Karamitsos TD et al (2007) Cardiovascular magnetic resonance perfusion imaging at 3-tesla for the detection of coronary artery disease: a comparison with 1.5-tesla. J Am Coll Cardiol 49:2440鈥?449 CrossRef
    47. Manso B, Castellote A, Dos L et al (2010) Myocardial perfusion magnetic resonance imaging for detecting coronary function anomalies in asymptomatic paediatric patients with a previous arterial switch operation for the transposition of great arteries. Cardiol Young 20:410鈥?17 CrossRef
    48. Prakash A, Powell AJ, Krishnamurthy R et al (2004) Magnetic resonance imaging evaluation of myocardial perfusion and viability in congenital and acquired pediatric heart disease. Am J Cardiol 93:657鈥?61 CrossRef
    49. Dulce MC, Mostbeck GH, O鈥橲ullivan M et al (1992) Severity of aortic regurgitation: interstudy reproducibility of measurements with velocity-encoded cine MR imaging. Radiology 185:235鈥?40 CrossRef
    50. Brenner LD, Caputo GR, Mostbeck G et al (1992) Quantification of left to right atrial shunts with velocity-encoded cine nuclear magnetic resonance imaging. J Am Coll Cardiol 20:1246鈥?250 CrossRef
    51. Fujita N, Chazouilleres AF, Hartiala JJ et al (1994) Quantification of mitral regurgitation by velocity-encoded cine nuclear magnetic resonance imaging. J Am Coll Cardiol 23:951鈥?58 CrossRef
    52. Westenberg JJ, Roes SD, Ajmone Marsan N et al (2008) Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology 249:792鈥?00 CrossRef
    53. Hsiao A, Lustig M, Alley MT et al (2012) Evaluation of valvular insufficiency and shunts with parallel-imaging compressed-sensing 4D phase-contrast MR imaging with stereoscopic 3D velocity-fusion volume-rendered visualization. Radiology 265:87鈥?5 CrossRef
    54. Kim RJ, Fieno DS, Parrish TB et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992鈥?002 CrossRef
    55. Kellman P, Arai AE, McVeigh ER et al (2002) Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med 47:372鈥?83 CrossRef
    56. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445鈥?453 CrossRef
    57. Goldfarb JW, Shinnar M (2006) Free-breathing delayed hyperenhanced imaging of the myocardium: a clinical application of real-time navigator echo imaging. J Magn Reson Imaging 24:66鈥?1 CrossRef
    58. Peters DC, Appelbaum EA, Nezafat R et al (2009) Left ventricular infarct size, peri-infarct zone, and papillary scar measurements: A comparison of high-resolution 3D and conventional 2D late gadolinium enhancement cardiac MR. J Magn Reson Imaging 30:794鈥?00 CrossRef
    59. Akcakaya M, Rayatzadeh H, Basha TA et al (2012) Accelerated late gadolinium enhancement cardiac MR imaging with isotropic spatial resolution using compressed sensing: initial experience. Radiology 264:691鈥?99 CrossRef
    60. Keegan J, Jhooti P, Babu-Narayan SV et al (2013) Improved respiratory efficiency of 3D late gadolinium enhancement imaging using the continuously adaptive windowing strategy (CLAWS). Magn Reson Med. doi:10.1002/mrm.24758
    61. Simonetti OP, Finn JP, White RD et al (1996) 鈥淏lack blood鈥?T2-weighted inversion-recovery MR imaging of the heart. Radiology 199:49鈥?7 CrossRef
    62. Abdel-Aty H, Boye P, Zagrosek A et al (2005) Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 45:1815鈥?822 CrossRef
    63. Friedrich MG, Sechtem U, Schulz-Menger J et al (2009) Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol 53:1475鈥?487 CrossRef
    64. Chu GC, Flewitt JA, Mikami Y et al (2013) Assessment of acute myocarditis by cardiovascular MR: diagnostic performance of shortened protocols. Int J Cardiovasc Imaging 29:1077鈥?083 CrossRef
    65. Aletras AH, Kellman P, Derbyshire JA et al (2008) ACUT2E TSE-SSFP: a hybrid method for T2-weighted imaging of edema in the heart. Magn Reson Med 59:229鈥?35 CrossRef
    66. Ferreira VM, Piechnik SK, Dall鈥橝rmellina E et al (2012) Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:42 CrossRef
    67. Dweck MR, Joshi S, Murigu T et al (2011) Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J Am Coll Cardiol 58:1271鈥?279 CrossRef
    68. Messroghli DR, Radjenovic A, Kozerke S et al (2004) Modified look-locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52:141鈥?46 CrossRef
    69. Fontana M, White SK, Banypersad SM et al (2012) Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson 14:88 CrossRef
    70. Flett AS, Hayward MP, Ashworth MT et al (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122:138鈥?44 CrossRef
    71. White SK, Sado DM, Fontana M et al (2013) T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging 6:955鈥?62 CrossRef
    72. Plymen CM, Sado DM, Taylor AM et al (2013) Diffuse myocardial fibrosis in the systemic right ventricle of patients late after Mustard or Senning surgery: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging 14:963鈥?68 CrossRef
    73. Tham EB, Haykowsky MJ, Chow K et al (2013) Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson 15:48 CrossRef
    74. Wong TC, Piehler K, Meier CG et al (2012) Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 126:1206鈥?216 CrossRef
    75. Miller CA, Naish JH, Bishop P et al (2013) Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 6:373鈥?83 CrossRef
    76. Bull S, White SK, Piechnik SK et al (2013) Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 99:932鈥?37 CrossRef
    77. Moon JC, Messroghli DR, Kellman P et al (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92 CrossRef
    78. Khan SN, Rapacchi S, Levi DS et al (2013) Pediatric cardiovascular interventional devices: effect on CMR images at 1.5 and 3 Tesla. J Cardiovasc Magn Reson 15:54 CrossRef
    79. Nordmeyer J, Gaudin R, Tann OR et al (2010) MRI may be sufficient for noninvasive assessment of great vessel stents: an in vitro comparison of MRI, CT, and conventional angiography. AJR Am J Roentgenol 195:865鈥?71 CrossRef
    80. Andreassi MG (2009) Radiation risk from pediatric cardiac catheterization: friendly fire on children with congenital heart disease. Circulation 120:1847鈥?849 CrossRef
    81. Tzifa A, Schaeffter T, Razavi R (2012) MR imaging-guided cardiovascular interventions in young children. Magn Reson Imaging Clin N Am 20:117鈥?28 CrossRef
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Imaging and Radiology
    Pediatrics
    Neuroradiology
    Nuclear Medicine
    Ultrasound
    Oncology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1998
文摘
Due to advances in cardiac surgery, survival of patients with congenital heart disease has increased considerably during the past decades. Many of these patients require repeated cardiovascular magnetic resonance imaging to assess cardiac anatomy and function. In the past decade, technological advances have enabled faster and more robust cardiovascular magnetic resonance with improved image quality and spatial as well as temporal resolution. This review aims to provide an overview of advances in cardiovascular magnetic resonance hardware and acquisition techniques relevant to both pediatric and adult patients with congenital heart disease and discusses the techniques used to assess function, anatomy, flow and tissue characterization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700