用户名: 密码: 验证码:
Diazotrophs-assisted phytoremediation of heavy metals: a novel approach
详细信息    查看全文
  • 作者:Abid Ullah (1)
    Hafsa Mushtaq (1)
    Hazrat Ali (2)
    Muhammad Farooq Hussain Munis (1)
    Muhammad Tariq Javed (3)
    Hassan Javed Chaudhary (1)

    1. Department of Plant Sciences
    ; Faculty of Biological Sciences ; Quaid-i-Azam University ; Islamabad ; 45320 ; Pakistan
    2. Department of Zoology
    ; University of Malakand ; Chakdara ; Dir Lower ; 18550 ; Khyber Pakhtunkhwa ; Pakistan
    3. Department of Botany
    ; Government College University ; Faisalabad ; 38000 ; Pakistan
  • 关键词:Bioaccumulation ; Diazotrophs ; Heavy metals ; Phytoremediation ; Plant ; microbe interaction
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:22
  • 期:4
  • 页码:2505-2514
  • 全文大小:525 KB
  • 参考文献:1. Abdelatey LM, Khalil WK, Ali TH, Mahrous KF (2011) Heavy metal resistance and gene expression analysis of metal resistance genes in gram-positive and gram-negative bacteria present in egyptian soils. J Appl Sci Environ San 6:201鈥?11
    2. Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. University of Georgia, Aitken, pp 15鈥?0 CrossRef
    3. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1鈥?0
    4. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals鈥攃oncepts and applications. Chemosphere 91:869鈥?81 CrossRef
    5. Altinozlu H, Karagoz A, Polat T, Unver I (2012) Nickel hyperaccumulation by natural plants in Turkish serpentine soils. Turk J Bot 36:269鈥?80
    6. Banasova V, Horak O, Nadubinska M, Ciamporova M (2008) Heavy metal content in / Thlaspi caerulescens J. et C. Presl growing on metalliferous and non-metalliferous soils in Central Slovakia. Int J Environ Pollut 33:133鈥?45 CrossRef
    7. Bani A, Pavlova D, Echevarria G, Mullai A, Reeves RD, Morel JL, Sulce S (2010) Nickel hyperaccumulation by the species of / Alyssum and / Thlaspi ( / Brassicaceae) from the ultramafic soils of the Balkans. Bot Serbica 34:3鈥?4
    8. Beskoski VP, Gojgic-Cvijovic G, Milic J, Ilic M, Miletic S, Solevic T, Vrvic MM (2011) / Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)鈥攁 field experiment. Chemosphere 83:34鈥?0 CrossRef
    9. Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63鈥?7 CrossRef
    10. Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280鈥?86 CrossRef
    11. Burd GI, Dixon DG, Glick RR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237鈥?45 CrossRef
    12. Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, L贸pez R, Chamber MA, Palomares AJ (2005) Isolation and characterization of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol Biochem 37:1131鈥?140 CrossRef
    13. Chaudhary HJ, Peng G, Hu M, He Y, Yang L, Luo Y, Tan Z (2012) Genetic diversity of endophytic diazotrophs of the wild rice, / Oryza alta and identification of the new diazotroph, / Acinetobacter oryzae sp. nov. Microb Ecol 63:813鈥?21 CrossRef
    14. Chehregani A, Malayeri B (2007) Removal of heavy metals by native accumulator plants. Int J Agric Biol 9:462鈥?65
    15. Chen WM, Wu CH, James EK, Chang JS (2008) Metal biosorption capability of / Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated / Mimosa. J Hazard Mater 151:364鈥?71 CrossRef
    16. Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261鈥?89 CrossRef
    17. Dary M, Chamber-Perez M, Palomares A, Pajuelo E (2010) / In situ phytostabilisation of heavy metal polluted soils using / Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323鈥?30 CrossRef
    18. de-Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth promoting bacteria to reduce environmental degradation鈥攁 comprehensive evaluation. Appl Soil Ecol 61:171鈥?89 CrossRef
    19. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107鈥?49 CrossRef
    20. D枚bereiner J, Day JM (1976) Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In: Newton WE, Nyman CJ (eds) Proc. 1 Intern. Symp. on Nitrogen Fixation. Washignton State University Press, Washignton, pp 518鈥?38
    21. D枚bereiner J, Pedrosa FO (1987) Nitrogen-fixing bacteria in nonleguminous crop plants, 1st edn. Springer, New York
    22. D枚bereiner J, Day JM, Dart PJ (1972) Nitrogenase activity and oxygen sensitivity of the / Paspalum notatum鈥?em class="a-plus-plus">Azotobacter paspali association. J Gen Microbiol 71:103鈥?16 CrossRef
    23. Doble M, Kumar A (2005) Biotreatment of industrial effluents. Elsvier, Butterworth-Heinemann, UK, pp 1鈥? CrossRef
    24. Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112鈥?18
    25. Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271鈥?79 CrossRef
    26. Gadd GM (2004) Microbial influence on metal mobility and application to bioremediation. Geoderma 122:109鈥?19 CrossRef
    27. Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13鈥?8 CrossRef
    28. Garcia-Salgado S, Garcia-Casillas D, Quijano-Nieto MA, Bonilla-Simon MM (2012) Arsenic and heavy metal uptake and accumulation in native plant species from soils polluted by mining activities. Water Air Soil Pollut 223:559鈥?72 CrossRef
    29. Ghosh M, Singh S (2005) A review on phytoremediation of heavy metals and utilization of it鈥檚 by products. Asian J Energy Environ 3:214鈥?31
    30. Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383鈥?93 CrossRef
    31. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367鈥?74 CrossRef
    32. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1鈥?5 CrossRef
    33. Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res 65:93鈥?06 CrossRef
    34. Hadi F, Bano A (2010) Effect of diazotrophs ( / Rhizobium and / Azotobacter) on growth of maize ( / Zea mays L.) and accumulation of Lead (Pb) in different plant parts. Pak J Bot 42:4363鈥?370
    35. Handelsman J, Stabb EV (1996) Biocontrol of soil borne plant pathogens. Plant Cell 8:1855鈥?869 CrossRef
    36. Hayat R, Sheirdil RA, Iftikhar-ul-Hassan M, Ahmed I (2013) Characterization and identification of compost bacteria based on 16S rRNA gene sequencing. Ann Microbiol 63:905鈥?12 CrossRef
    37. Hussain A, Abbas N, Arshad F, Akram M, Khan ZI, Ahmad K, Mansha M, Mirzaei F (2013) Effects of diverse doses of Lead (Pb) on different growth attributes of / Zea-Mays L. Agric Sci 4:262鈥?65
    38. Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:1670鈥?676 CrossRef
    39. Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2008) Promotion of metal accumulation in nodule of / Astragalus sinicus by the expression of the iron-regulated transporter gene in / Mesorhizobium huakuii subsp. / rengei B3. J Biosci Bioeng 105:642鈥?48 CrossRef
    40. Iqbal M, Khan AG, Anwar-ul-hassan AM (2012) Soil physical health indices, soil organic carbon, nitrate contents and wheat growth as influenced by irrigation and nitrogen rates. Int J Agric Biol 14:1鈥?0
    41. Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339鈥?64 CrossRef
    42. Jiang C, Sheng X, Qian M, Wang Q (2008) Isolation and characterization of a heavy metal-resistant / Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72:157鈥?64 CrossRef
    43. Jones DL (1998) Organic acids in the rhizosphere鈥攁 critical review. Plant Soil 205:25鈥?4 CrossRef
    44. Joshi PM, Juwarkar AA (2009) / In vivo studies to elucidate the role of extracellular polymeric substances from / Azotobacter in immobilization of heavy metals. Environ Sci Technol 43:5884鈥?889 CrossRef
    45. Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 10:1996鈥?002 CrossRef
    46. Kalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of / Pteris vittata- prospective for phytoextraction from contaminated water and soil. Curr Sci 100:888鈥?94
    47. Kamran MA, Mufti R, Mubariz N, Syed JH, Bano A, Javed MT, Chaudhary HJ (2014) The potential of the flora from different regions of Pakistan in phytoremediation: a review. Environ Sci Pollut Res 21:801鈥?12 CrossRef
    48. Khan AG (2005) Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355鈥?64 CrossRef
    49. Khan S, Hesham AE, Qiao M, Rehman S, He JZ (2010) Effects of Cd and Pb on soil microbial community structure and activities. Environ Sci Pollut Res 17:288鈥?96 CrossRef
    50. Kidd P, Barcelo J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S et al (2009) Trace element behaviour at the root鈥搒oil interface: implications in phytoremediation. Environ Exp Bot 67:243鈥?59 CrossRef
    51. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant鈥搈icrobe interaction. Mol Plant-Microbe Interact 17:6鈥?5 CrossRef
    52. Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of / Brassica juncea. J Hazard Mater 170:51鈥?7 CrossRef
    53. K眉pper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291鈥?300
    54. Laskar F, Sharma GD, Deb B (2013) Characterization of plant growth promoting traits of diazotrophic bacteria and their inoculating effects on growth and yield of rice crops. Biotechnology 2:3鈥?
    55. Li Y-M, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107鈥?15 CrossRef
    56. Lombi E, Zhao F, Dunham S, McGrath S (2001) Phytoremediation of heavy metal-contaminated soils:natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919鈥?926 CrossRef
    57. Lovley DR (2000) Fe(III) and Mn(IV) reduction. In: Lovley DR (ed) Environmental microbe鈥搈etal interactions. Am Soc Microbiol, Washington, pp. 3鈥?0
    58. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011a) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248鈥?58 CrossRef
    59. Ma Y, Rajkumar M, Luo Y, Freitas H (2011b) Inoculation of endophytic bacteria on host and non-host plants鈥攅ffects on plant growth and Ni uptake. J Hazard Mater 195:230鈥?37 CrossRef
    60. Neubauer U, Furrer G, Schulin R (2002) Heavy metal sorption on soil minerals affected by the siderophore desferrioxamine B: the role of Fe(III) (hydr)oxides and dissolved Fe(III). Eur J Soil Sci 53:45鈥?5 CrossRef
    61. Nie L, Shah S, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium / Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355鈥?61 CrossRef
    62. Nonnoi F, Chinnaswamy A, Garc铆a de la Torre VS, Coba de la Pe帽a T, Lucas MM, Pueyo JJ (2012) Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes / Medicago spp. and / Trifolium spp. growing in mercury-contaminated soils. Appl Soil Ecol 61:49鈥?9 CrossRef
    63. Omura Y, Shimotsuura Y, Fukuoka A, Fukuoka H, Nomoto T (1996) Significant mercury deposits in internal organs following the removal of dental amalgam, & development of pre-cancer on the gingiva and the sides of the tongue and their represented organs as a result of inadvertent exposure to strong curing light (used to solidify synthetic dental filling material) & effective treatment: a clinical case report, along with organ representation areas for each tooth. Acupunct Electrother Res 21:133鈥?60
    64. Pandey VC (2012) Phytoremediation of heavy metals from fly ash pond by / Azolla caroliniana. Ecotoxicol Environ Saf 82:8鈥?2 CrossRef
    65. Park JD (2010) Heavy metal poisoning. Hanyang Med Rev 30:319鈥?25 CrossRef
    66. Pavel VL, Sobariu DL, Tudorache Fertu ID, Statescu F, Gaverilescu M (2013) Symbiosis in the environment biomanagement of soils contaminated with heavy metals. Eur J Sci Theol 9:211鈥?24
    67. Pedraza RO (2008) Recent advances in nitrogen-fixing acetic acid bacteria. Int J Food Microbiol 125:25鈥?5 CrossRef
    68. Rai PK (2008) Technical note: phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte / Azolla pinnata. Int J Phytoremed 10:430鈥?39 CrossRef
    69. Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153鈥?60 CrossRef
    70. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142鈥?49 CrossRef
    71. Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562鈥?574 CrossRef
    72. Raju PN, Evans HJ, Seidler RJ (1972) An asymbiotic nitrogen-fixing bacterium from the root environment of corn. Proc Natl Acad Sci 69:3474鈥?478 CrossRef
    73. Razi SS, Sen SP (1996) Amelioration of water stress effects on wetland rice by urea-N, plant growth regulators, and foliar spray of a diazotrophic bacterium / Klebsiella sp. Biol Fertil Soils 23:454鈥?58 CrossRef
    74. Ribeiro de Souza SC, L贸pez A, de Andrade S, Anjos de Souza L, Schiavinato MA (2012) Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. J Environ Manag 110:299鈥?07 CrossRef
    75. Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527鈥?60 plant.52.1.527" target="_blank" title="It opens in new window">CrossRef
    76. Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal鈥恈ontaminated water and sediment by / Eleocharis acicularis. Clean Soil Air Water 39:735鈥?41 CrossRef
    77. Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118鈥?38 CrossRef
    78. Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844鈥?854 CrossRef
    79. Sheng X, He L, Wang Q, Ye H, Jiang C (2008a) Effects of inoculation of biosurfactant-producing / Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155:17鈥?2 CrossRef
    80. Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008b) Characterization of heavy metal-resistant endophytic bacteria from rape / Brassica napus roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164鈥?170 CrossRef
    81. Smith SR, Jaffe DM, Skinner MA (1997) Case report of metallic mercury injury. Pediatr Emerg Care 13:114鈥?16 CrossRef
    82. Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd 2+ by a / Mesorhizobium sp. transformed with a gene from / Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:1791鈥?796 CrossRef
    83. Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by / Azospirillum brasilense and their effect on the growth of pearl millet ( / Pennisetum americanum). Appl Environ Microbiol 37:1016鈥?024
    84. Van Ginneken L, Meers E, Guisson R, Ruttens A, Elst K, Tack FM, Vangronsveld J, Diels L, Dejonghe W (2007) Phytoremediation for heavy metal鈥恈ontaminated soils combined with bioenergy production. J Environ Eng Landsc Manag 15:227鈥?36
    85. Van Hullebusch ED, Lens PNL, Tabak HH (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides. 3. Influence of chemical speciation and bioavailability on contaminants immobilization/mobilization bio-processes. Rev Environ Sci Biotechnol 4:185鈥?12 CrossRef
    86. Venkatesh NM, Vedaraman N (2012) Remediation of soil contaminated with copper using rhamnolipids produced from / Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Ann Microbiol 62:85鈥?1 CrossRef
    87. Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163鈥?172 CrossRef
    88. Wani PA, Khan MS, Zaidi A (2007a) Effect of metal tolerant plant growth promoting / Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36鈥?5 CrossRef
    89. Wani PA, Khan MS, Zaidi A (2007b) Impact of zinc-tolerant plant growth-promoting rhizobacteria on lentil grown on zinc-amended soil. Agron Sustain Dev 28:449鈥?55 CrossRef
    90. Wani PA, Khan MS, Zaidi (2008) Effect of metal-tolerant plant growth-promoting / Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33鈥?2 CrossRef
    91. Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (Phytoremediation) of soil. Plant Soil 321:385鈥?08 CrossRef
    92. Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant鈥搈icrobe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591鈥?98 CrossRef
    93. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487鈥?11 CrossRef
    94. Wu CH, Wood TK, Mulchandani A, Chen W (2006a) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129鈥?134 CrossRef
    95. Wu S, Cheung K, Luo Y, Wong M (2006b) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by / Brassica juncea. Environ Pollut 140:124鈥?35 CrossRef
    96. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soil: a review of sources, chemistry, risks and best available strategies for bioremediation. ISRN Ecol 2011:1鈥?0 CrossRef
    97. Yan-de J, Zhen-li H, Xiao-e (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192鈥?07
    98. Yang X, Feng Y, Hi Z, Stofella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339鈥?53 CrossRef
    99. Yang S, Deng H, Li M (2008) Manganese uptake and accumulation in a woody hyperaccumulator, / Schima superba. Plant Soil Environ 54:441鈥?46
    100. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968鈥?89
    101. Zhang X, Xia H, Li Z, Zhuang P, Gao B (2011) Identification of a new potential Cd-hyperaccumulator / Solanum photeinocarpum by soil seed bank-metal concentration gradient method. J Hazard Mater 189:414鈥?19 CrossRef
    102. Zhao F, Dunham S, McGrath S (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156:27鈥?1 CrossRef
    103. Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator / Thlaspi caerulescens. Plant Soil 249:37鈥?3 CrossRef
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
Heavy metals, which have severe toxic effects on plants, animals, and human health, are serious pollutants of the modern world. Remediation of heavy metal pollution is utmost necessary. Among different approaches used for such remediation, phytoremediation is an emerging technology. Research is in progress to enhance the efficiency of this plant-based technology. In this regard, the role of rhizospheric and symbiotic microorganisms is important. It was assessed by enumeration of data from the current studies that efficiency of phytoremediation can be enhanced by assisting with diazotrophs. These bacteria are very beneficial because they bring metals to more bioavailable form by the processes of methylation, chelation, leaching, and redox reactions and the production of siderophores. Diazotrophs also posses growth-promoting traits including nitrogen fixation, phosphorous solubilization, phytohormones synthesis, siderophore production, and synthesis of ACC-deaminase which may facilitate plant growth and increase plant biomass, in turn facilitating phytoremediation technology. Thus, the aim of this review is to highlight the potential of diazotrophs in assisting phytoremediation of heavy metals in contaminated soils. The novel current assessment of literature suggests the winning combination of diazotroph with phytoremediation technology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700