用户名: 密码: 验证码:
A New Perspective of Lysosomal Cation Channel-Dependent Homeostasis in Alzheimer's Disease
详细信息    查看全文
  • 作者:Martin Ezeani ; Maxwell Omabe
  • 关键词:Lysosomal Cation Channels ; Cation homeostasis ; AD ; PHL
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:53
  • 期:3
  • 页码:1672-1678
  • 全文大小:691 KB
  • 参考文献:1.Pillay CS, Elliott E, Dennison C (2002) Endolysosomal proteolysis and its regulation. Biochem J 363:417–429. doi:10.​1042/​0264-6021:​3630417 CrossRef PubMed PubMedCentral
    2.Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A (2002) NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111:703–708CrossRef PubMed
    3.Michelangeli F, Ogunbayo OA, Wootton LL (2005) A plethora of interacting organellar Ca2+ stores. Curr Opin Cell Biol 17:135–140CrossRef PubMed
    4.Dong XP, Wang X, Xu H (2010) TRP channels of intracellular membranes. J Neurochem 113:313–328CrossRef PubMed PubMedCentral
    5.Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H (2010) PI (3,5)P 2 controls membrane trafficking by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nat Commun 1:11CrossRef
    6.Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, Tang J, Rietdorf K, Teboul L, Chuang KT, Lin P, Xiao R, Wang C, Zhu Y, Lin Y, Wyatt CN, Parrington J, Ma J, Evans AM, Galione A, Zhu MX (2009) NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 459:596–600CrossRef PubMed PubMedCentral
    7.Cang C, Zhou Y, Navarro B, Seo Y, Aranda K, Shi L, Battaglia-Hsu S, Nissim I, Clapham ED, Ren D (2013) mTOR regulates lysosomal ATP-sensitive two-pore Na+ channels to adapt to metabolic state. Cell 152:778–790CrossRef PubMed PubMedCentral
    8.Berridge MJ, Bootman MD, Roderick HL (2003) Calcium: calcium signalling: dynamics, homeostasis and remodeling. Nat Rev Mol Cell Biol 4:517–529CrossRef PubMed
    9.Zhang Z, Lu Y, Yue J (2013) Two pore channel 2 differentially modulates neural differentiation of mouse embryonic stem. PLos One 8:1–13
    10.Mills E, Dong X, Wang F, Xu H (2010) Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Futur Med Chem 2(1):51CrossRef
    11.Pryor PR, Reimann F, Gribble FM, Luzio JP (2006) Mucolipin-1 is a lysosomal membrane protein required for intracellular lactosylceramide traffic. Traffic 7:1388–1398CrossRef PubMed
    12.Thompson EG, Schaheen L, Dang H, Fares H (2007) Lysosomal trafficking functions of mucolipin-1 in murine macrophages. BMC Cell Biol 8:54
    13.Yu W, Hill WG, Apodaca G, Zeide ML (2011) Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium. Am J Physiol Renal Physiol 300:F49–F59CrossRef PubMed PubMedCentral
    14.Zhang X, Li X, Xu, H (2012) Phosphoinositides isoforms determine compartment-specific ion channel activity PNAS 1–6
    15.Wang X, Zhang X, Dong X, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J, Zhu MX, Clapham DE, Ren D, Xu H (2012) TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell 151:372–383CrossRef PubMed PubMedCentral
    16.Li X, Garrity AG, Xu H (2013) Regulation of membrane trafficking by signaling on endosomal and lysosomal membranes. J Phys 00:1–13
    17.Chi X, Wang S, Huang Y, Stamnes M, Chen JL (2013) Roles of rho GTPases in intracellular transport and cellular transformation. Int J Mol Sci 14:7089–7108CrossRef PubMed PubMedCentral
    18.Parkinson-Lawrence EJ et al (2010) Lysosomal storage disease: revealing lysosomal function and physiology. Physiology (Bethesda) 25:102–115CrossRef
    19.Vitner EB, Platt FM, Futerman AH (2010) Common and uncommon pathogenic cascades in lysosomal storage diseases. J Biol Chem 2(85):20423–20427CrossRef
    20.Shen D, Wang X, Li X, Zhang X, Yao Z, Dibble S, Dong X, Yu T, Lieberman AP, Showalter HD, Xu H (2012) Lipid storage disorders block lysosomal trafficking by inhibiting TRP channel and calcium release. Nat Commun 3:731CrossRef PubMed PubMedCentral
    21.Jha A, Ahuja M, Patel S, Brailoiu E, Muallem S (2014) Convergent regulation of the lysosomal two-pore channel-2 by Mg2+, NAADP, PI(3,5)P2 and multiple protein kinases. EMBO J 33:501–511CrossRef PubMed PubMedCentral
    22.Lloyd-Evans E, Morgan AJ, He X, Smith DA, Elliot-Smith E, Sillence DJ, Churchill GC, Schuchman EH, Galione A, Platt FM (2008) Niemann–Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nat Med 14:1247–1255CrossRef PubMed
    23.Morgan AJ, Galione A (2007) NAADP induces pH changes in the lumen of acidic Ca2+ stores. Biochem J 402:301–310CrossRef PubMed PubMedCentral
    24.Bach G, Chen C, Pagano ER (1999) Elevated lysosomal pH in Mucolipidosis type IV cells. Clin Chim Acta 280:173–179CrossRef PubMed
    25.Soyombo AA, Tjon-Kon-Sang S, Rbaibi Y, Bashllari E, Bisceglia J, Muallem S, Kiselyov K (2006) TRP-ML1 regulates lysosomal pH and acidic lysosomal lipid hydrolytic activity. J Biol Chem 281:7294–7301CrossRef PubMed
    26.Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929. doi:10.​1038/​nrm2272 CrossRef PubMed
    27.Kornak U, Kasper D, Bo MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling W, Jentsch JT (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215CrossRef PubMed
    28.Lange PF, Wartosch L, Jentsch TJ, Fuhrman JC (2006) ClC-7 requires Ostm1 as a b-subunit to support bone resorption and lysosomal function. Nature 440:220–223CrossRef PubMed
    29.Weinert S, Jabs S, Supanchart C, Schweizer M, Gimber N, Richter M, Rademann J, Stauber T, Kornak U, Jentsch TJ (2010) Lysosomal pathology and osteopetrosis upon loss of H + −Driven lysosomal Cl− accumulation. Science 328:1401CrossRef PubMed
    30.Graves AR, Curran PK, Smith CL, Mindell JA (2008) The Cl−/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453:788–792. doi:10.​1038/​nature06907 CrossRef PubMed
    31.Xu H, Delling M, Li L, Dong X, Clapham DE (2007) Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice. PNAS 104:18321–18326CrossRef PubMed PubMedCentral
    32.Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455:992–996CrossRef PubMed PubMedCentral
    33.Liu R, Zhou Q, Ji S, Zhou Q, Feng D, Wu DY, Sui F (2010) Membrane localization of _-amyloid 1–42 in lysosomes a possible mechanism for lysosome labilization. J Biol Chem 285:19986–19996CrossRef PubMed PubMedCentral
    34.Shen D, Wang X, Xu H (2011) Pairing phosphoinositides with calcium ions in endolysosomal dynamics. Bioessays 33:448–457CrossRef PubMed PubMedCentral
    35.Simons K, Ehehalt R (2002) Cholesterol, lipid rafts, and disease. J Clin Investig 110:597–603CrossRef PubMed PubMedCentral
    36.Grimm MO, Grimm HS, Patzold AJ et al (2005) Regulation of cholesterol and sphingomyelin metabolism by Amyloid-beta and presenilin. Nat Cell Biol 7:1118–1123CrossRef PubMed
    37.Abad-Rodriguez J, Ledesma MD, Craessaerts K et al (2004) “Neuronal membrane cholesterol loss enhances Amyloid peptide generation”. J Cell Biol 167:953–960CrossRef PubMed PubMedCentral
    38.Wang H, Lee DHS, D’Andrea MR, Peterson PA, Shank RP, And Reitz AB (2000) β-Amyloid1–42 binds to α7 nicotinic acetylcholine receptor with high affinity. J Biol Chem 275:5626–5632CrossRef PubMed
    39.Hongpaisan J, Sun M, Daniel L (2011) Alkon1PKC _ activation prevents synaptic loss, a elevation, and cognitive deficits in Alzheimer’s Disease transgenic mice. J Neurosci 31:630–643CrossRef PubMed
    40.Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O, Ashe KH, Frautschy SA, Cole GM (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s Disease. J Neurosci 20:5709–5714PubMed
    41.Bae M, Patel N, Xu H, Lee M, Tominaga-Yamanaka K, Nath A, Geiger J, Gorospe M, Mattson MP, Haughey NJ (2014) Activation of TRPML1 clears intraneuronal Aβ in preclinical models of HIV infection. J Neurosci 34(34):11485–11503 11485
    42.Kiselyov K, Chen J, Rbaibi Y, Oberdick D, Tjon-Kon-Sang S, Shcheynikov N, Muallem S, Soyombo A (2005) TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage. J Biol Chem 280:43218–43223CrossRef PubMed
    43.Clapham ED (2009) Transient receptor potential channels. Encycl Neurosci 9:1109–1133CrossRef
    44.Grimm C et al (2010) Small molecule activators of TRPML3. Chem Biol 17:135–148CrossRef PubMed PubMedCentral
    45.Dong XP et al (2009) Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis. J Biol Chem 284:32040–32052CrossRef PubMed PubMedCentral
    46.Hay JC (2007) Calcium: a fundamental regulator of intracellular membrane fusion? EMBO Rep 8:236–240CrossRef PubMed PubMedCentral
    47.Brailoiu E, Churamani D, Cai X, Schrlau MG, Brailoiu GC, Gao X, Hooper R, Boulware MJ, Dun NJ, Marchant JS, Patel S (2009) Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J Cell Biol 186:201–209CrossRef PubMed PubMedCentral
    48.Zong X, Schieder M, Cuny H, Fenske S, Gruner C, Rotzer K, Griesbeck O, Harz H, Biel M, Wahl-Schott C (2009) The two-pore channel TPCN2 mediates NAADP-dependent Ca2 + −release from lysosomal stores. Pflugers Arch 458:891–899CrossRef PubMed PubMedCentral
    49.Zhu MX, Ma J, Parrington J, Galione A, Evans AM (2010) TPCs: endolysosomal channels for Ca2+ mobilization from acidic organelles triggered by NAADP. FEBS Lett 584:1966–1974CrossRef PubMed PubMedCentral
  • 作者单位:Martin Ezeani (1)
    Maxwell Omabe (2)

    1. Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
    2. Cancer Research Unit, Saskatchewan Cancer Agency, Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
Studies have reported typically biophysical lysosomal cation channels including TPCs. Their plausible biological roles are being elucidated by pharmacological, genetic and conventional patch clamp procedures. The best characterized so far among these channels is the ML1 isoform of TRP. The reported TRPs and TPCs are bypass for cation fluxes and are strategic for homeostasis of ionic milieu of the acidic organelles they confine to. Ca2+ homeostasis and adequate acidic pHL are critically influential for the regulation of a plethora of biological functions these intracellular cation channels perform. In lysosomal ion channel biology, we review: ML1 and TPC2 in Ca2+ signaling, ML1 and TPC2 in pHL regulation. Using Aβ42 and tau proteins found along clathrin endolysosomal internalization pathway (Fig. 3), we proffer a mechanism of abnormal pHL and ML1/TPC2-dependent cation homeostasis in AD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700