用户名: 密码: 验证码:
Regulation of tyrosine hydroxylase is preserved across different homo- and heterodimeric 14-3-3 proteins
详细信息    查看全文
  • 作者:Sadaf Ghorbani ; Agnete Fossbakk ; Ana Jorge-Finnigan ; Marte I. Flydal…
  • 关键词:14 ; 3 ; 3 ; Heterodimer ; Isoform ; Tyrosine hydroxylase ; Activation
  • 刊名:Amino Acids
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:48
  • 期:5
  • 页码:1221-1229
  • 全文大小:1,248 KB
  • 参考文献:Aitken A (2006) 14-3-3 proteins: a historic overview. Semin Cancer Biol 16(3):162–172CrossRef PubMed
    Almas B, Le Bourdelles B, Flatmark T, Mallet J, Haavik J (1992) Regulation of recombinant human tyrosine hydroxylase isozymes by catecholamine binding and phosphorylation. Structure/activity studies and mechanistic implications. Eur J Biochem 209(1):249–255CrossRef PubMed
    Andersson KK, Vassort C, Brennan BA, Que L Jr, Haavik J, Flatmark T, Gros F, Thibault J (1992) Purification and characterization of the blue-green rat phaeochromocytoma (PC12) tyrosine hydroxylase with a dopamine-Fe(III) complex. Reversal of the endogenous feedback inhibition by phosphorylation of serine-40. Biochem J 284(Pt 3):687–695CrossRef PubMed PubMedCentral
    Benzing T, Yaffe MB, Arnould T, Sellin L, Schermer B, Schilling B, Schreiber R, Kunzelmann K, Leparc GG, Kim E et al (2000) 14-3-3 interacts with regulator of G protein signaling proteins and modulates their activity. J Biol Chem 275(36):28167–28172PubMed
    Bevilaqua LR, Cammarota M, Dickson PW, Sim AT, Dunkley PR (2003) Role of protein phosphatase 2C from bovine adrenal chromaffin cells in the dephosphorylation of phospho-serine 40 tyrosine hydroxylase. J Neurochem 85(6):1368–1373CrossRef PubMed
    Chaudhri M, Scarabel M, Aitken A (2003) Mammalian and yeast 14-3-3 isoforms form distinct patterns of dimers in vivo. Biochem Biophys Res Commun 300(3):679–685CrossRef PubMed
    Cohen P, Alemany S, Hemmings BA, Resink TJ, Stralfors P, Tung HY (1988) Protein phosphatase-1 and protein phosphatase-2A from rabbit skeletal muscle. Methods Enzymol 159:390–408CrossRef PubMed
    Foote M, Qiao H, Graham K, Wu Y, Zhou Y (2015) Inhibition of 14-3-3 Proteins Leads to Schizophrenia-Related Behavioral Phenotypes and Synaptic Defects in Mice. Biol Psychiatry
    Haavik J, Andersson KK, Petersson L, Flatmark T (1988) Soluble tyrosine hydroxylase (tyrosine 3-monooxygenase) from bovine adrenal medulla: large-scale purification and physicochemical properties. Biochim Biophys Acta 953(2):142–156CrossRef PubMed
    Haavik J, Schelling DL, Campbell DG, Andersson KK, Flatmark T, Cohen P (1989) Identification of protein phosphatase 2A as the major tyrosine hydroxylase phosphatase in adrenal medulla and corpus striatum: evidence from the effects of okadaic acid. FEBS Lett 251(1–2):36–42CrossRef PubMed
    Halskau O, Ying M, Baumann A, Kleppe R, Rodriguez-Larrea D, Almas B, Haavik J, Martinez A (2009) Three-way interaction between 14-3-3 proteins, the N-terminal region of tyrosine hydroxylase, and negatively charged membranes. J Biol Chem 284(47):32758–32769CrossRef PubMed PubMedCentral
    Haycock JW, Wakade AR (1992) Activation and multiple-site phosphorylation of tyrosine hydroxylase in perfused rat adrenal glands. J Neurochem 58(1):57–64CrossRef PubMed
    Haycock JW, Bennett WF, George RJ, Waymire JC (1982) Multiple site phosphorylation of tyrosine hydroxylase. Differential regulation in situ by a 8
    omo-cAMP and acetylcholine. J Biol Chem 257(22):13699–13703PubMed
    Ichimura T, Isobe T, Okuyama T, Takahashi N, Araki K, Kuwano R, Takahashi Y (1988) Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc Natl Acad Sci USA 85(19):7084–7088CrossRef PubMed PubMedCentral
    Itagaki C, Isobe T, Taoka M, Natsume T, Nomura N, Horigome T, Omata S, Ichinose H, Nagatsu T, Greene LA et al (1999) Stimulus-coupled interaction of tyrosine hydroxylase with 14-3-3 proteins. Biochemistry 38(47):15673–15680CrossRef PubMed
    Jacobsen KK, Kleppe R, Johansson S, Zayats T, Haavik J (2015) Epistatic and gene wide effects in YWHA and aromatic amino hydroxylase genes across ADHD and other common neuropsychiatric disorders: association with YWHAE. Am J Med Genet B Neuropsychiatr Genet 168B:423–432CrossRef
    Jones DH, Ley S, Aitken A (1995) Isoforms of 14-3-3 protein can form homo- and heterodimers in vivo and in vitro: implications for function as adapter proteins. FEBS Lett 368(1):55–58CrossRef PubMed
    Kacirova M, Kosek D, Kadek A, Man P, Vecer J, Herman P, Obsilova V, Obsil T (2015) Structural characterization of phosducin and its complex with the 14-3-3 protein. J Biol Chem 290(26):16246–16260CrossRef PubMed
    Kleppe R, Rosati S, Jorge-Finnigan A, Alvira S, Ghorbani S, Haavik J, Valpuesta JM, Heck AJ, Martinez A (2014) Phosphorylation dependence and stoichiometry of the complex formed by tyrosine hydroxylase and 14-3-3gamma. Mol Cell Proteomics 13(8):2017–2030CrossRef PubMed PubMedCentral
    Leal RB, Sim AT, Goncalves CA, Dunkley PR (2002) Tyrosine hydroxylase dephosphorylation by protein phosphatase 2A in bovine adrenal chromaffin cells. Neurochem Res 27(3):207–213CrossRef PubMed
    Liang X, Butterworth MB, Peters KW, Walker WH, Frizzell RA (2008) An obligatory heterodimer of 14-3-3beta and 14-3-3epsilon is required for aldosterone regulation of the epithelial sodium channel. J Biol Chem 283(41):27418–27425CrossRef PubMed PubMedCentral
    Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase. the initial step in norepinephrine biosynthesis. J Biol Chem 239:2910–2917PubMed
    Nakashima A, Hayashi N, Kaneko YS, Mori K, Sabban EL, Nagatsu T, Ota A (2007) RNAi of 14-3-3eta protein increases intracellular stability of tyrosine hydroxylase. Biochem Biophys Res Commun 363(3):817–821CrossRef PubMed
    Nakashima A, Mori K, Kaneko YS, Hayashi N, Nagatsu T, Ota A (2011) Phosphorylation of the N-terminal portion of tyrosine hydroxylase triggers proteasomal digestion of the enzyme. Biochem Biophys Res Commun 407(2):343–347CrossRef PubMed
    Niu J, Scheschonka A, Druey KM, Davis A, Reed E, Kolenko V, Bodnar R, Voyno-Yasenetskaya T, Du X, Kehrl J et al (2002) RGS3 interacts with 14-3-3 via the N-terminal region distinct from the RGS (regulator of G-protein signalling) domain. Biochem J 365(Pt 3):677–684CrossRef PubMed PubMedCentral
    Obsil T, Ghirlando R, Klein DC, Ganguly S, Dyda F (2001) Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation. Cell 105(2):257–267CrossRef PubMed
    Paul AL, Denison FC, Schultz ER, Zupanska AK, Ferl RJ (2012) 14-3-3 phosphoprotein interaction networks—does isoform diversity present functional interaction specification? Front Plant Sci 3:190CrossRef PubMed PubMedCentral
    Rajagopalan S, Sade RS, Townsley FM, Fersht AR (2010) Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms. Nucleic Acids Res 38(3):893–906CrossRef PubMed PubMedCentral
    Ramshaw H, Xu X, Jaehne EJ, McCarthy P, Greenberg Z, Saleh E, McClure B, Woodcock J, Kabbara S, Wiszniak S et al (2013) Locomotor hyperactivity in 14-3-3zeta KO mice is associated with dopamine transporter dysfunction. Transl Psychiatry 3:e327CrossRef PubMed PubMedCentral
    Rezabkova L, Man P, Novak P, Herman P, Vecer J, Obsilova V, Obsil T (2011) Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. J Biol Chem 286(50):43527–43536CrossRef PubMed PubMedCentral
    Rivero G, Gabilondo AM, Garcia-Sevilla JA, La Harpe R, Morentin B, Meana JJ (2015) Up-regulated 14-3-3beta and 14-3-3zeta proteins in prefrontal cortex of subjects with schizophrenia: effect of psychotropic treatment. Schizophr Res 161(2–3):446–451CrossRef PubMed
    Sato S, Chiba T, Sakata E, Kato K, Mizuno Y, Hattori N, Tanaka K (2006) 14-3-3eta is a novel regulator of parkin ubiquitin ligase. EMBO J 25(1):211–221CrossRef PubMed PubMedCentral
    Sekiguchi H, Iritani S, Habuchi C, Torii Y, Kuroda K, Kaibuchi K, Ozaki N (2011) Impairment of the tyrosine hydroxylase neuronal network in the orbitofrontal cortex of a genetically modified mouse model of schizophrenia. Brain Res 1392:47–53CrossRef PubMed
    Subramanian RR, Masters SC, Zhang H, Fu H (2001) Functional conservation of 14-3-3 isoforms in inhibiting bad-induced apoptosis. Exp Cell Res 271(1):142–151CrossRef PubMed
    Sura GR, Daubner SC, Fitzpatrick PF (2004) Effects of phosphorylation by protein kinase A on binding of catecholamines to the human tyrosine hydroxylase isoforms. J Neurochem 90(4):970–978CrossRef PubMed PubMedCentral
    Sutherland C, Alterio J, Campbell DG, Le Bourdelles B, Mallet J, Haavik J, Cohen P (1993) Phosphorylation and activation of human tyrosine hydroxylase in vitro by mitogen-activated protein (MAP) kinase and MAP-kinase-activated kinases 1 and 2. Eur J Biochem 217(2):715–722CrossRef PubMed
    Tanji M, Horwitz R, Rosenfeld G, Waymire JC (1994) Activation of protein kinase C by purified bovine brain 14-3-3: comparison with tyrosine hydroxylase activation. J Neurochem 63(5):1908–1916CrossRef PubMed
    Toska K, Kleppe R, Armstrong CG, Morrice NA, Cohen P, Haavik J (2002) Regulation of tyrosine hydroxylase by stress-activated protein kinases. J Neurochem 83(4):775–783CrossRef PubMed
    Toyo-oka K, Shionoya A, Gambello MJ, Cardoso C, Leventer R, Ward HL, Ayala R, Tsai LH, Dobyns W, Ledbetter D et al (2003) 14-3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Nat Genet 34(3):274–285CrossRef PubMed
    Vincenz C, Dixit VM (1996) 14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules. J Biol Chem 271(33):20029–20034CrossRef PubMed
    Wang J, Lou H, Pedersen CJ, Smith AD, Perez RG (2009) 14-3-3zeta contributes to tyrosine hydroxylase activity in MN9D cells: localization of dopamine regulatory proteins to mitochondria. J Biol Chem 284(21):14011–14019CrossRef PubMed PubMedCentral
    Yamauchi T, Nakata H, Fujisawa H (1981) A new activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+-, calmodulin-dependent protein kinase. Purification and characterization. J Biol Chem 256(11):5404–5409PubMed
    Yang X, Lee WH, Sobott F, Papagrigoriou E, Robinson CV, Grossmann JG, Sundstrom M, Doyle DA, Elkins JM (2006) Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc Natl Acad Sci USA 103(46):17237–17242CrossRef PubMed PubMedCentral
  • 作者单位:Sadaf Ghorbani (1) (2)
    Agnete Fossbakk (1) (2)
    Ana Jorge-Finnigan (1) (2)
    Marte I. Flydal (1)
    Jan Haavik (1) (2) (3)
    Rune Kleppe (1) (2)

    1. Department of Biomedicine, University of Bergen, Bergen, Norway
    2. K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
    3. Haukeland University Hospital, Bergen, Norway
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Analytical Chemistry
    Biochemical Engineering
    Life Sciences
    Proteomics
    Neurobiology
  • 出版者:Springer Wien
  • ISSN:1438-2199
  • 卷排序:48
文摘
Tyrosine hydroxylase (TH) is regulated by members of the 14-3-3 protein family. However, knowledge about the variation between 14-3-3 proteins in their regulation of TH is still limited. We examined the binding, effects on activation and dephosphorylation kinetics of tyrosine hydroxylase (TH) by abundant midbrain 14-3-3 proteins (β, η, ζ, γ and ε) of different dimer composition. All 14-3-3 homodimers and their respective 14-3-3ε-heterodimers bound with similar high affinity (K d values of 1.4–3.8 nM) to serine19 phosphorylated human TH (TH-pS19). We similarly observed a consistent activation of bovine (3.3- to 4.4-fold) and human TH-pS19 (1.3–1.6 fold) across all the different 14-3-3 dimer species, with homodimeric 14-3-3γ being the strongest activator. Both hetero- and homodimers of 14-3-3 strongly inhibited dephosphorylation of TH-pS19, and we speculate if this is an important homeostatic mechanism of 14-3-3 target-protein regulation in vivo. We conclude that TH is a robust interaction partner of different 14-3-3 dimer types with moderate variability between the 14-3-3 dimers on their regulation of TH. Keywords 14-3-3 Heterodimer Isoform Tyrosine hydroxylase Activation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700