用户名: 密码: 验证码:
Block-Wise Abstract Interpretation by Combining Abstract Domains with SMT
详细信息    查看全文
文摘
Statement-wise abstract interpretation that calculates the abstract semantics of a program statement by statement, is scalable but may cause precision loss due to limited local information attached to each statement. While Satisfiability Modulo Theories (SMT) can be used to characterize precisely the semantics of a loop-free program fragment, it is challenging to analyze loops efficiently using plainly SMT formula. In this paper, we propose a block-wise abstract interpretation framework to analyze a program block by block via combining abstract domains with SMT. We first partition a program into blocks, encode the transfer semantics of a block through SMT formula, and at the exit of a block we abstract the SMT formula that encodes the post-state of a block w.r.t. a given pre-state into an abstract element in a chosen abstract domain. We leverage the widening operator of abstract domains to deal with loops. Then, we design a disjunctive lifting functor on top of abstract domains to represent and transmit useful disjunctive information between blocks. Furthermore, we consider sparsity inside a large block to improve efficiency of the analysis. We develop a prototype based on block-wise abstract interpretation. We have conducted experiments on the benchmarks from SV-COMP 2015. Experimental results show that block-wise analysis can check about 1x more properties than statement-wise analysis does.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700