用户名: 密码: 验证码:
Heat flux: thermohydraulic investigation of solar air heaters used in agro-industrial applications
详细信息    查看全文
  • 作者:H. Rahmati Aidinlou ; A. M. Nikbakht
  • 刊名:Heat and Mass Transfer
  • 出版年:2017
  • 出版时间:March 2017
  • 年:2017
  • 卷:53
  • 期:3
  • 页码:917-928
  • 全文大小:
  • 刊物类别:Engineering
  • 刊物主题:Engineering Thermodynamics, Heat and Mass Transfer; Industrial Chemistry/Chemical Engineering; Thermodynamics;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1432-1181
  • 卷排序:53
文摘
A new design of solar air heater simulator is presented to comply with the extensive applications inagro-industry. A wise installation of increased heat transfer surface area provided uniform and efficient heat diffusion over the duct. Nusselt number and friction factor have been investigated based on the constant roughness parameters such as relative roughness height (e/D), relative roughness pitch (P/e), angle of attack (α) and aspect ratio with Reynolds numbers ranging from 5000 to 19,000 in the fully developed region. Heat fluxes of 800, 900 and 1000 Wm−2 were provided. The enhancement in friction factor is observed to be 3.1656, 3.47 and 3.0856 times, and for the Nusselt number either, augmentation is calculated to be 1.4437, 1.4963 and 1.535 times, respectively, over the smooth duct for 800, 900 and 1000 Wm−2 heat fluxes. Thermohydraulic performance is plotted versus the Reynolds number based on the aforementioned roughness parameters at varying heat fluxes. The results show up that thermohydraulic performance is found to be maximum for 1000 Wm−2 at the average Reynolds number of 5151. Based on the results, we can verify that the introduced solar simulator can help analyzing and developing solar collector installations at the simulated heat fluxes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700