用户名: 密码: 验证码:
Cell wall-degrading enzymes of Didymella bryoniae in relation to fungal growth and virulence in cantaloupe fruit
详细信息    查看全文
  • 作者:J. Zhang (1) (3)
    B. D. Bruton (1) (4)
    C. L. Biles (2)
  • 关键词:Cucumis melo ; Black rot ; Pectolytic enzymes ; Polygalacturonase ; Pectate lyase ; Pectin lyase ; Cellulase ; β ; galactosidase
  • 刊名:European Journal of Plant Pathology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:139
  • 期:4
  • 页码:749-761
  • 全文大小:362 KB
  • 参考文献:1. Akagi, A., & Stotz, H. U. (2007). Effects of pathogen polygalacturonases, ethylene, and firmness on interactions between pear fruit and / Botrytis cinerea. Plant Disease, 91, 1337-344. CrossRef
    2. Barkai-Golan, R., & Karadavid, R. (1991). Cellulolytic activity of / Penicillium digitatum and / P. italicum related to fungal growth and pathogenesis in citrus fruit. / Journal of Phytopathology, 131, 65-2. CrossRef
    3. Barker, K. R., & Walker, J. C. (1962). Relationship of pectolytic and cellulytic enzyme production by strains of / Pellicularia filamentosa to their pathogenicity. / Phytopathology, 52, 1119-125.
    4. Barras, F., van Gijsegem, F., & Chatterjee, A. K. (1994). Extracellular enzymes and pathogenesis of soft-rot / Erwinia. Annual Review of Phytopathology, 32, 201-34. CrossRef
    5. Bartley, I. M. (1974). β-galactosidase activity in ripening apples. / Phytochemistry, 13, 2107-111. CrossRef
    6. Bateman, D. F., & Basham, H. G. (1976). Degradation of plant cell walls and membranes by microbial enzymes. / Encyclopedia of Plant Physiology, New Series, 4, 316-55.
    7. Benard, D., & Punja, Z. K. (1995). Role of Pythium species in cavity spot development on carrots in British Columbia. / Canadian Journal of Plant Pathology, 17, 31-5. CrossRef
    8. Biles, C. L., Wall, M. M., & Blackstone, K. (1993). Morphological and physiological changes during maturation of New Mexican type peppers. / Journal of the American Society for Horticultural Science, 118, 476-80.
    9. Biles, C. L., Bruton, B. D., Russo, V., & Wall, M. M. (1997). Characterization of β-galactosidase isozymes of ripening New Mexican type peppers. / Journal of the Science of Food and Agriculture, 75, 237-43. CrossRef
    10. Bonghi, C., Rascio, N., Ranima, A., & Casadora, G. (1992). Cellulase and polygalacturonase involvement in the abscission of leaf and fruit explants of peach. / Plant Molecular Biology, 20, 839-48. CrossRef
    11. Brown, R. L., Cleveland, T. E., Cotty, P. J., & Mellon, J. E. (1992). Spread of / Aspergillus flavus in cotton bolls, decay of intercarpellary membrances, and production of fungal pectinases. / Phytopathology, 82, 462-67. CrossRef
    12. Bruton, B. D., Biles, C. L., Cluck, T. W., & Garcia-Jimenez, J. (1996). Fungal enzymes associated with selected vine decline pathogens of cantaloupe (Abstract). / Phytopathology, 86, S104.
    13. Carder, J. H., Hignett, R. C., & Swinburne, T. R. (1987). Relationship between the virulence of hop isolates of / Verticillium albo- / atrum and their in vitro secretion of cell wall-degrading enzymes. / Physiological and Molecular Plant Pathology, 31, 441-52. CrossRef
    14. Carrington, C. M. S., & Pressey, R. (1996). β-galactosidase II activity in relation to changes in cell wall galactosyl composition during tomato ripening. / Journal of the American Society for Horticultural Science, 121, 132-36.
    15. Chan, Y. H., & Sackston, W. E. (1970). Polygalacturonase production by virulent and avirulent isolates of / Sclerotium bataticola in culture and in sunflowers. / Canadian Journal of Botany, 48, 1449-453. CrossRef
    16. Chilosi, G., & Magro, P. (1998). Pectolytic enzymes produced in vitro and during colonization of melon tissues by / Didymella bryoniae. Plant Pathology, 47, 700-05. CrossRef
    17. Cleveland, T. E., & Cotty, P. J. (1991). Invasiveness of / Aspergillus flavus isolates in wounded cotton bolls is associated with production of a specific fungal polygalacturonase. / Phytopathology, 81, 155-58. CrossRef
    18. Collmer, A., & Keen, N. T. (1986). The role of pectic enzymes in plant pathogenesis. / Annual Review of Phytopathology, 24, 383-09. CrossRef
    19. Collmer, A., Ried, J.L., & Mount, M.S. (1988) Assay methods for pectic enzymes. In W.A. Wood,& S.T. Kellogg (Eds.). Methods in Enzymology, (Vol. 161, pp. 329-35). Academic Press, Inc., San Diego.
    20. Cooper, R. M., & Wood, K. S. (1975). Regulation of synthesis of cell wall degrading enzymes by / Verticillium albo- / atrum and / Fusarium oxysporum f. sp. / lycopersici. / Physiol. / Plant Pathology, 5, 135-56.
    21. Crawford, M. S., & Kolattukudy, P. K. (1987). Pectate lyase from / Fusarium solani f. sp. / pisi: purification, characterization, in vitro translation of the mRNA, and involvement in pathogenicity. / Archives of Biochemistry and Biophysics, 258, 196-05. CrossRef
    22. Curren, T. (1969). Pectic and cellulolytic enzymes produced by / Mycosphaerella citrullina and their relation to black rot of squash. / Canadian Journal of Botany, 47, 791-94. CrossRef
    23. DeVeau, E. J. I., Gross, K. C., Huber, D. J., & Watada, A. E. (1993). Degradation and solubilization of pectin by β-galactosidases purified from avocado mesocarp. / Physiologia Plantarum, 87, 279-85. CrossRef
    24. Dori, S., Solel, Z., & Barash, I. (1995). Cell wall-degrading enzymes produced by / Gaeumannomyces graminis var. / tritici in vitro and in vivo. Physiol. Mol. / Plant Pathology, 46, 189-98.
    25. Golden, K. D., John, M. A., & Kean, E. A. (1993). β-galactosidase from / Coffea arabica and its role in fruit ripening. / Phytochemistry, 34, 355-60. CrossRef
    26. Gough, C. I., Dow, J. M., Barber, C. E., & Daniels, M. J. (1988). Cloning of two endoglucanase genes of / Xanthomonas campestris pv / campestris: analysis of the role of the major endoglucanase in pathogenesis. / Molecular Plant-Microbe Interactions, 1, 275-81. CrossRef
    27. Gross, K. C. (1982). A rapid and sensitive spectrophotometric method for assaying polygalacturonase using 2-cyanoacetamide. / HortScience, 17, 933-34.
    28. Gross, K. C., Watada, A. E., Kang, S. D., Kim, S. D., & Lee, S. W. (1986). Biochemical changes associated with the ripening of hot pepper fruit. / Physiologia Plantarum, 66, 31-6. CrossRef
    29. Hancock, J. G. (1968). Degradation of pectic substances during pathogenesis by / Fusarium solani f. sp. / cucurbitae. Phytopathology, 58, 62-9.
    30. Huang, Q., & Allen, C. (1997). An exo-poly-α-D-galacturonase, PehB, is required for wild-type virulence of / Ralstonia solanacearum. Journal of Bacteriology, 179, 7369-378.
    31. Karr, A. L., & Albersheim, P. (1970). Polysaccharide-degrading enzymes are unable to attack plant cell walls without prior action by “wall-modifying enzymes- / Plant Physiology, 46, 69-0. CrossRef
    32. Keinath, A. P. (2011). From native plants in central Europe to cultivated crops worldwide: the emergence of / Didymella bryoniae as a cucurbit pathogen. / HortScience, 46, 532-35.
    33. Keinath, A. P., Farnham, M. W., & Zitter, T. A. (1995). Morphological, pathological, and genetic differentiation of / Didymella bryoniae and / Phoma spp. isolated from cucurbits. / Phytopathology, 85, 364-69. CrossRef
    34. Kitagawa, Y., Kanayama, Y., & Yamaki, S. (1995). Isolation of β-galactosidase fractions from Japanese pear: Activity against native cell-wall polysaccharides. / Physiologia Plantarum, 93, 545-50. CrossRef
    35. Konno, H., Yamasaki, Y., & Katoh, K. (1986). Characteristics of β-galactosidase purified from cell suspension cultures of carrot. / Physiologia Plantarum, 68, 46-2. CrossRef
    36. Le-Cam, B., Massiot, P., & Rouxel, F. (1994). Cell wall polysaccharide-degrading enzymes produced by isolates of / Mycocentrospora acerina differing in aggressiveness on carrot. / Physiological and Molecular Plant Pathology, 44, 187-98. CrossRef
    37. Lehtinen, U. (1993). Plant cell wall degrading enzymes of / Septoria nodorum. Physiological and Molecular Plant Pathology, 43, 121-34. CrossRef
    38. Lei, S. P., Lin, H. C., Heffernan, L., & Wilcox, G. (1985). Evidence that polygalacturonase is a virulence determinant in / Erwinia carotovora. Journal of Bacteriology, 164, 831-35.
    39. Martinson, C., & Baker, R. (1962). Increasing relative frequency of specific fungus isolations with soil microbiological sampling tubes. / Phytopathology, 52, 619-21.
    40. Miller, M. E., Isakeit, T., Zhang, J. X., & Bruton, B. D. (1997) Gummy stem blight and black rot of melons. In M. E. Miller (Ed.), Melon Production System in Southern Texas. Ann. Res. Report (pp. 1-9) Texas A&M Univ. Syst., Agri. Res. Ext. Cent., Weslaco, TX.
    41. Misaghi, I. J. (1982). The role of pathogen-produced cell-wall-degrading enzymes in pathogenesis. In I. J. Misaghi (Ed.), / Physiology and Biochemistry of Plant-Pathogen Interactions (pp. 17-4). New York: Plenum Press. CrossRef
    42. Novo, M., Pomar, F., Gayoso, C., & Merina, F. (2006). Cellulase activity in isolates of / Verticillium dahliae differing in aggressiveness. / Plant Disease, 90, 155-60. CrossRef
    43. Paquin, R., & Coulombe, L. J. (1962). Pectic enzyme synthesis in relation to virulence in / Fusarium oxysporum f. / lycopersici (Sacc.) Snyder and Hansen. / Canadian Journal of Botany, 40, 533-41. CrossRef
    44. Punja, Z. K., Huang, J. S., & Jenkins, S. F. (1985). Relationship of mycelial growth and production of oxalic acid and cell wall degrading enzymes to virulence in / Sclerotium rolfsii. Canadian Journal of Plant Pathology, 7, 109-17. CrossRef
    45. Ranwala, A. P., Suematsu, C., & Masuda, H. (1992). The role of β-galactosidase in the modification of cell wall components during muskmelon fruit ripening. / Plant Physiology, 100, 1318-325. CrossRef
    46. Reshetnikova, A., & Uspenskaya, G. D. (1978). Pectolytic enzymes of fungi of the genus / Askochyta lib. / Biologicheskie Nauki (Russia), 6, 97-00.
    47. Rodriguez-Pelenzuela, P., Burr, T. J., & Collmer, A. (1991). Polygalacturonase is a virulence factor in / Agrobacterium tumefaciens biovar 3. / Journal of Bacteriology, 173, 6547-552.
    48. Sawicka, T., & Kacperska, A. (1995). Soluble and cell wall-associated β-galactosidases from cold-grown winter rape ( / Brassica napus L. var. / oleifera L.) leaves. / Journal of Plant Physiology, 145, 357-62. CrossRef
    49. Sitterly, W. R., & Keinath, A. P. (1996). Gummy stem blight. In T. A. Zitter, D. L. Hopkins, & C. E. Thomas (Eds.), / Compendium of Cucurbit Diseases (pp. 27-8). St. Paul: APS Press.
    50. van Steekelenburg, N. A. M. (1982). Factors influencing external fruit rot of cucumber caused by / Didymella bryoniae. Netherlands Journal of Plant Pathology, 92, 81-1. CrossRef
    51. Vu, B. V., Itoh, K., Nguyen, Q. B., Tosa, Y., & Nakayashiki, H. (2012). Cellulases belonging to glycoside hydrolase families 6 and 7 contribute to the virulence of / Magnaporthe oryzae. Molecular Plant-Microbe Interactions, 25, 1135-141. CrossRef
    52. Zhang, J., Bruton, B. D., Miller, M. E., & Isakeit, T. (1999). Relationship of cantaloupe fruit developmental stage to black rot susceptibility and enzyme production by / Didymella bryoniae. Plant Disease, 83, 1025-032. CrossRef
    53. Zitter, T. A. (1996). Black rot. In T. A. Zitter, D. L. Hopkins, & C. E. Thomas (Eds.), / Compendium of Cucurbit Diseases (p. 48). St. Paul: APS Press.
  • 作者单位:J. Zhang (1) (3)
    B. D. Bruton (1) (4)
    C. L. Biles (2)

    1. USDA-ARS, South Central Agricultural Research Laboratory, Lane, OK, 74555, USA
    3. Florida Department of Citrus, 700 experiment Station Road, Lake Alfred, FL, 33850, USA
    4. P.O. Box 43, Atoka, OK, 74525, USA
    2. Department of Biology, East Central University, Ada, OK, 74820, USA
  • ISSN:1573-8469
文摘
Didymella bryoniae is an important pathogen of cucurbits worldwide. Virulence factors of D. bryoniae were investigated in regard to fungal growth and the production of the cell wall-degrading enzymes, polygalacturonase (PG), pectate lyase (PL), pectin lyase (PNL), β-galactosidase (β-Gal) and cellulase (Cx). Virulence levels of five D. bryoniae isolates were determined by the severity of inoculated cantaloupe fruit decay. The highly virulent isolates had more mycelial growth than the moderately virulent isolates in different media. PG activities produced by the highly virulent isolates in shake cultures and in decayed fruit were greater than those of the moderately virulent isolates. PNL, but not PL, in decayed fruit was higher with the highly virulent isolates compared to the moderately virulent ones. The highly virulent isolates showed higher Cx activity than the moderately virulent ones in decayed fruit and in fruit tissue shake culture. β-Gal activities of the highly virulent isolates in pectin shake culture and in decayed fruit were greater than those of the two moderately virulent isolates although fruit also produced β-Gal. Protein analysis showed two fungal β-Gal isozymes in decayed fruit compared to those of healthy fruit. Correlation analysis indicated that the activities of PG, PNL, β-Gal and Cx in cultures and in decayed fruit positively correlated with fungal growth and fruit decay severity. The results of this study suggest that PG, PNL, β-Gal, and Cx appear to be virulence factors of D. bryoniae in cantaloupe decay with PG and β-Gal as the most predominant fruit decay enzymes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700