用户名: 密码: 验证码:
Promotion of growth, health and stress tolerance of Styrian oil pumpkins by bacterial endophytes
详细信息    查看全文
  • 作者:Michael Fürnkranz (1) m_fuernkranz@gmx.at
    Eveline Adam (1)
    Henry Müller (1)
    Martin Grube (2)
    Herbert Huss (3)
    Johanna Winkler (4)
    Gabriele Berg (1)
  • 关键词:Antagonist – Biocontrol – Didymella bryoniae – Field trial – Fruit rot – Pumpkin diseases
  • 刊名:European Journal of Plant Pathology
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:134
  • 期:3
  • 页码:509-519
  • 全文大小:322.4 KB
  • 参考文献:1. Babadoost, M., & Zitter, T. A. (2009). Fruit rots of pumpkin. Plant Disease, 93, 772–782.
    2. Berg, G., & Hallmann, J. (2006). Control of plant pathogenic fungi with bacterial endophytes. In B. Schulz, C. Boyle, & T. Sieber (Eds.), Microbial root endophytes (pp. 53–70). Berlin: Springer.
    3. Berg, G. (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84, 11–18.
    4. Berg, G., Zachow, C., Cardinale, M., & Müller, H. (2009). Ecology and human pathogenicity of plant-associated bacteria. In R. U. Ehlers (Ed.), Regulation of biological control agents (pp. 175–189). Berlin: Springer.
    5. Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–9.
    6. Dreikorn, K. (2002). The role of phytotherapy in treating lower urinary tract symptoms and benign prostatic hyperplasia. World Journal of Urology, 19, 426–35.
    7. Fruehwirth, G. O., & Hermetter, A. (2007). Seeds and oil of the Styrian oil pumpkin: components and biological activities. European Journal of Lipid Science and Technology, 109, 1128–1140.
    8. Fürnkranz, M., Lukesch, B., Muller, H., Huss, H., Grube, M., & Berg, G. (2012). Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microbial Ecology, 63, 418–28.
    9. Huss, H. (2007). Didymella bryoniae im Steirischen ?lkürbis: Neben Fruchtf?ule auch Verursacher der Blattdürre. Der Pflanzenarzt, 60, 10–11.
    10. Huss, H., & Mavridis, A. (2007). Bakterium Pseudomonas viridiflava: Neue Blattfleckenkrankheit am Steirischen ?lkürbis. Der Pflanzenarzt, 60, 8–9.
    11. Huss, H., Winkler, J., & Greimel, C. (2007). Der Pilz Didymella bryoniae sch?digt steirischen ?lkürbisanbau: Fruchtf?ule statt Kern?l. Der Pflanzenarzt, 60, 14–16.
    12. Huss, H., Mavridis, A., & Eitzinger, J. (2009). Bakterien-Weichf?ule bei ?lkürbis: Weiche Schale, keine Kerne. Der Pflanzenarzt, 14, 14–15.
    13. Huss, H., & Winkler, J. (2009). Neue virusbedingte Krankheitsbilder bei ?lkürbis: Gef?hrlich sch?n gescheckt. Der Pflanzenarzt, 62, 12–13.
    14. Huss, H. (2011). Krankheiten und Sch?dlinge im ?lkürbisbau. Der fortschrittliche Landwirt, 3, 30–33.
    15. Keinath, A. P. (2011). From native plants in Central Europe to cultivated crops worldwide: the emergence of Didymella bryoniae as a cucurbit pathogen. Hortscience, 46(4), 532–535.
    16. Koo, S. Y., & Cho, K. S. (2009). Isolation and characterization of a plant-growth-promoting rhizobacterium, Serratia sp. SY5. Journal of Microbiology and Biotechnology, 19, 1431–1438.
    17. Lee, D.-H., Mathur, S. B., & Neergaard, P. (1984). Detection and location of seed-borne inoculum of Didymella bryoniae and its transmission in seedlings of cucumber and pumpkin. Journal of Phytopathology, 109, 301–308.
    18. Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–56.
    19. Mei, C., & Flinn, B. S. (2010). The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Patents on Biotechnology, 4, 81–95.
    20. Müller, H., & Berg, G. (2008). Impact of formulation procedures on the effect of Serratia plymuthica on Verticillium wilt in oilseed rape. BioControl, 53, 905–916.
    21. Müller, H., Westendorf, C., Leitner, E., Chernin, L., Riedel, K., Schmidt, S., et al. (2009). Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiology Ecology, 67, 468–78.
    22. Rademaker, J. L. W., & de Bruijn, F. J. (1997). Characterization and classification of microbes by REP-PCR genomic fingerprinting and computer-assisted pattern analysis. In G. Caetano-Anollés & P. M. Gresshoff (Eds.), DNA markers: protocols, applications and overviews (pp. 151–171). New York: Wiley.
    23. Reddy, M. S., Hynes, R. K., & Lazarovits, G. (1993). Relationship between in vitro growth inhibition of pathogens and suppression of preemergence damping-off and postemergence root rot of white bean seedlings in the greenhouse by bacteria. Canadian Journal of Microbiology, 40, 113–119.
    24. Sessitsch, A., Coenye, T., Sturz, A. V., Vandamme, P., Barka, E. A., Salles, J. F., et al. (2005). Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. International Journal of Systematic and Evolutionary Microbiology, 55, 1187–1192.
    25. Sitterly, W. R., & Keinath, A. P. (1996). Gummy stem blight. In T. A. Zitter, D. L. Hopkins, & C. E. Thomas (Eds.), Compendium of cucurbit diseases (pp. 27–28). St. Paul: American Phytological Society Press.
    26. Teppner, H. (2000). Cucurbita pepo (Cucurbitaceae) - history, seed coat types, thin coated seeds and their genetics. Phyton Annales Rei Botanicae, 40, 1–208.
    27. Trnka, M., Eitzinger, J., Dubrovsky, M., Semerádová, D., Stepánek, P., Hlavinka, P., et al. (2010). Is rainfed crop production in central Europe at risk? Using a regional climate model to produce high resolution agroclimatic information for decision makers. Journal of Agricultural Science, 148, 639–656.
    28. Weller, D. M., & Cook, R. J. (1983). Suppression of take-all of wheat by seed-treatment with fluorescent pseudomonads. Phytopathology, 73, 463–469.
  • 作者单位:1. Department of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz, Austria2. Institute of Plant Sciences, Holteigasse 12, Graz, Austria3. Agricultural Research & Education Centre Raumberg-Gumpenstein, Field Trial Station Lambach, Gmundnerstra?e 9, Stadl-Paura, Austria4. Saatzucht Gleisdorf Ges.mbH, Am Tieberhof 33, Gleisdorf, Austria
  • ISSN:1573-8469
文摘
Substantial yield losses of Styrian oil pumpkin caused by the fungus Didymella bryoniae and bacterial pathogens were recently reported. Here we applied bacterial endophytes with a broad antagonistic activity to pumpkin plants by seed priming. Effects of the bacterial inoculants with and without chemical seed treatments on plant growth and health were evaluated during three different field trials in two consecutive years (2010 and 2011). Biological seed treatments strongly supported the germination of pumpkin seeds. In 2010, the germination of the biologically treated seeds was comparable to the rate following a chemical treatment; whilst in 2011 effects of biological seed treatments were more obvious, including an increased emergence rate up to 109 % by Serratia plymuthica S13. Furthermore, tolerance against desiccation stress was observed for Serratia as well as for Lysobacter gummosus L101 treatment. The biological treatment showed different effects against fungal diseases: no effect on fruit rot was observed, whereas powdery mildew could be significantly suppressed by Paenibacillus polymyxa PB71 and L. gummosus L101 in 2010. In addition, both strains led to reproducible increases in harvest yields. In this study, we found bacterial endophytes suitable as inoculants for plant growth promotion, biocontrol, as well as for enhancing stress tolerance in Styrian oil pumpkins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700