用户名: 密码: 验证码:
Carbohydrate production by microbial mats communities in tidal flat from Bahía Blanca Estuary (Argentina)
详细信息    查看全文
  • 作者:E. M. Fernández ; C. V. Spetter ; A. M. Martinez…
  • 关键词:Colloidal carbohydrates ; Capsular carbohydrates ; Sediments ; Estuarine tidal flat
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:75
  • 期:8
  • 全文大小:1,701 KB
  • 参考文献:Beigt D (2006). Balance energético de las planicies de marea del estuario de Bahía Blanca. Dissertation, Universidad Nacional del Sur
    Bellinger BJ, Abdullahi AS, Gretz MR, Underwood GJC (2005) Biofilm polymers: relationship between carbohydrate biopolymers from estuarine mudflats and unialgal cultures of benthic diatoms. Aquat Microb Ecol 38:169–180CrossRef
    Buhl-Mortensen L (1996) Amphipod fauna along offshore-fjord gradient. J Nat Hist 30:23–49CrossRef
    Caçador I, Costa AL, Vale C (2004) Carbon storage in Tagus salt marsh sediments. Water Air Soil Pollut Focus 4(2):701–714CrossRef
    Chapman PM, Wang F (2001) Assessing sediment contamination in estuaries. Environ Toxicol Chem 20:3–22CrossRef
    Christie MC, Dyer KR, Blanchard G, Gramp A, Mitchener HJ, Paterson DM (2000) Temporal and spatial distribution of moisture and organic contents across a macrotidal mudflat. Cont Shelf Res 20:1219–1241CrossRef
    Cronk JK, Fennessy MS (2001) Wetland plants: biology and ecology. Lewis Publishers, Boca RatonCrossRef
    Cuadrado DG, Pizani NV (2007) Identification of microbially induced sedimentary structures over a tidal flat. Lat Am J Sedimentol Basin Anal 14:105–116
    Cuadrado DG, Carmona NB, Bournod CN (2011) Biostabilization of sediments by microbial mats in a temperate siliciclastic tidal flat, Bahía Blanca estuary (Argentina). Sed Geol 237:95–101CrossRef
    de Brouwer JFC, Stal LJ (2001) Short-term dynamics in microphytobenthos distribution and associated extracellular carbohydrates in surface sediments of an intertidal mudflat. Mar Ecol Prog Ser 218:33–44CrossRef
    de Brouwer JFC, de Deckere EMGT, Stal LJ (2003) Distribution of extracellular carbohydrates in three intertidal mudflats in Western Europe. Estuar Coast Shelf Sci 56:313–324CrossRef
    de Brouwer JFC, Wolftein K, Ruddy GK, Jones TER, Stal LJ (2005) Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produce by benthic diatoms. Microb Ecol 49:501–512CrossRef
    de Winder B, Staats N, Stal LJ, Paterson DM (1999) Carbohydrate secretion by phototrophic communities in tidal sediments. J Sea Res 42:131–146CrossRef
    Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sediment Petrol 44:242–248
    Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28:73–153
    Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW, InfoStat versión (2015). Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://​www.​infostat.​com.​ar . Accessed 2 Oct 2015
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356CrossRef
    Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438CrossRef
    Dupré LS (2012) Producción de exopolisacáridos en la planicie intermareal de Puerto Cuatreros. Dissertation, Universidad Nacional del Sur (in Spanish)
    Franks J, Stolz JF (2009) Flat laminated microbial mat communities. Earth Sci Rev 96:163–172CrossRef
    Gerdes G, Klenke T, Noffke N (2000) Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology 47:279–308CrossRef
    Graf G, Schulz R, Peinert R, Meyer-Reil LA (1983) Benthic response to sedimentation events during autumn to spring at a shallow water station in Western Kiel Bay I. Analysis of processes on a community level. Mar Biol 77:235–246CrossRef
    Hoagland KD, Rosowski JR, Gretz MR, Roemer SC (1993) Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. J Phycol 29:537–566CrossRef
    Konhauser K (2007) Introduction to geomicrobiology. Blackwell, UK
    Lorenzen CJ (1967) Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr 12:343–348CrossRef
    Mendez Casariego A, Luppi T, Iribarne O, Daleo P (2011) Increase of organic matter transport between marshes and tidal flats by the burrowing crab Neohelice (Chasmagnathus) granulata Dana in SW Atlantic salt marshes. J Exp Mar Biol Ecol 40:110–117CrossRef
    Mills EL (1975) Benthic organisms and the structure of marine ecosystems. J Fish Res Bd Can 32:1657–1663CrossRef
    Moreno S, Niell FX (2004) Scales of variability in the sediment chlorophyll content of the shallow Palmones River Estuary, Spain. Estuar Coast Shelf Sci 60:49–57CrossRef
    Negrin VL, Spetter CV, Guinder VA, Perillo GME, Marcovecchio JE (2013) The role of Sarcocornia perennis and tidal flooding on sediment biogeochemistry in a South American wetland. Mar Biol Res 9:703–715CrossRef
    Noffke N, Gerdes G, Klenke T, Krumbein WE (2001) Microbially induced sedimentary structures—a new category within the classification of primary sedimentary structures. J Sediment Res 71(5):649–656CrossRef
    Noffke N, Knoll AH, Grotzinger J (2002) Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: a case study from the Upper Neoproterozoic Nama Group, Namibia. Palaios 17:533–544CrossRef
    Pan J, Bournod CN, Cuadrado DG, Vitale A, Piccolo MC (2013a) Interaction between estuarine microphytobenthos and physical forcings: the role of atmospheric and sedimentary factors. Int J Geosci 4(2):352–361CrossRef
    Pan J, Bournod CN, Pizani NV, Cuadrado DG, Carmona NV (2013b) Characterization of microbial mats from a siliciclastic tidal flat (Bahía Blanca Estuary, Argentina). Geomicrobiol J 30:665–674CrossRef
    Paterson DM, Crawford RM, Little C (1990) Subaerial exposure and changes in the stability of intertidal estuarine sediments. Estuar Coast Shelf Sci 30:541–556CrossRef
    Paterson DM, Stal LJ, Krumbein WE (1994) Biostabilization of Sediments: Including the Final Report of the Project: Microbially Mediated Processes in Tide Influenced Deposits and Their Importance in Stabilization and Digenesis of Sediments. Bibliotheks und Informations system der Carl von Ossietzky Universität Oldenburg, Oldenburg
    Perillo GME (1995) Geomorphology and sedimentology of estuaries: an introduction. In: Perillo GME (ed) Geomorphology and sedimentology of estuaries. Elsevier, Amsterdam, pp 1–16CrossRef
    Perillo GME, Piccolo MC, Parodi E, Freije RH (2001) The Bahía Blanca Estuary, Argentina. In: Seeliger U, Kjerfve B (eds) Coastal marine ecosystems of latin America, ecological studies 144. Springer, Berlin, pp 205–217CrossRef
    Piccolo MC, Diez PG (2004) Meteorología del Puerto Coronel Rosales. In: Píccolo MC, Hoffmeyer M (eds) Ecosistema del Estuario de Bahía Blanca, 3rd edn. Ediuns, Bahía Blanca, pp 87–91
    Piccolo MC, Perillo GME, Melo WD (2008) The Bahía Blanca estuary: an integrated overview of its geomorphology and dynamics. In: Neves R, Barreta J, Mateus M (eds) Perspectives on integrated coastal zone management in South America. IST Press Lisbon, Portugal, pp 219–229
    Pierson BK, Bauld J, Castenholz RW, D’Amelio E, Des Marais DJ, Farmer J, Grotzinger JP, Jørgensen BB, Nelson DC, Palmisano AC, Schopf JW, Summons RE, Walter MR, Ward DM (1992) Modern mat-building microbial communities: a key to the interpretation of proterozoic stromatolitic communities. In: Schopf JW, Klein C (eds) The proterozoic biosphere. Cambridge University Press, New York
    Pinckney JL (1994) Development of an irradiance-based ecophysiological model for intertidal benthic microalgal production. In: Stal L, Krumbein W, Paterson Dand (eds) Biostabilization of sediments. Universität Oldenburg, Oldenburg, pp 55–83
    Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC Press, Boca RatonCrossRef
    Rossi F, De Philippis R (2015) Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5:1218–1238CrossRef
    Spetter CV, Buzzi NS, Fernández EM, Cuadrado DG, Marcovecchio JE (2015) Assessment of the physicochemical conditions sediments in a polluted tidal flat colonized by microbial mats in Bahía Blanca Estuary (Argentina). Mar Pollut Bull 91(2):491–505CrossRef
    Staats N, Stal LJ, de Winder B, Mur LR (2000) Oxygenic photosynthesis as driving process in exopolysaccharide production of benthic diatoms. Mar Ecol Prog Ser 193:261–269CrossRef
    Staats N, de Deckere EMGT, de Winder B, Stal LJ (2001) Spatial patterns of benthic diatoms, carbohydrates and mud on a tidal flat in the Ems-Dollard estuary. Hydrobiologia 448(1):107–115CrossRef
    Stal LJ (2000) Cyanobacterial mats and stromatolites. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 61–120
    Stal LJ (2010) Microphytobenthos as a biogeomorfological force in intertidal sediment stabilization. Ecol Eng 36:236–245CrossRef
    Stal LJ, de Brouwer JFC (2003) Biofilm formation by benthic diatoms and their influence on the stabilization of intertidal mudflats. Berichte-Forschungszentrum Terramare 12:109–111
    Strickland JDH, Parson TR (1968) A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Bulletin 167, 1st edn. p 193–196
    Thornton DCO, Dong LF, Underwood GJC, Nedwell DB (2002) Factors affecting microphytobenthic biomass, species composition and production in the Colne Estuary (UK). Aquat Microb Ecol 27:285–300CrossRef
    Underwood GJC (1997) Microalgal colonisation in a saltmarsh restoration scheme. Est. Coastal Shelf Sci. 44:471–481CrossRef
    Underwood GJC, Paterson DM (2003) The Importance of Extracellular Carbohydrate Production by Marine Epipelic Diatoms. Adv Bot Res 40:183–240CrossRef
    Underwood GJC, Smith DJ (1998) Predicting epipelic diatom exopolymer concentrations in intertidal sediments from sediment chlorophyll a. Microb Ecol 35:116–125CrossRef
    Underwood GJC, Boulcott M, Raines CA (2004) Environmental effects on exopolymer production by marine benthic diatoms: dynamics, changes in composition, and pathways of production. J Phycol 40:293–304CrossRef
    Villanueva Alvarez L (2005) Ecophysiological and molecular characterization of estuarine microbial mats. Dissertation, Universidad de Barcelona
    Wang WW, Li DJ, Zhou JL, Gao L (2011) Nutrient dynamics in pore water of tidal marshes near the Yangtze Estuary and Hangzhou Bay, China. Environ Earth Sci 63:1067–1077CrossRef
    Zar JH (1996) Biostatistical Analysis, 3rd edn. Prentice Hall, New Jersey
  • 作者单位:E. M. Fernández (1)
    C. V. Spetter (1) (2)
    A. M. Martinez (2) (5)
    D. G. Cuadrado (1) (3)
    M. J. Avena (2) (5)
    J. E. Marcovecchio (1) (4) (6)

    1. Instituto Argentino de Oceanografía (IADO), CONICET/UNS, Bahía Blanca, Argentina
    2. Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
    5. Instituto de Química del Sur (INQUISUR), CONICET/UNS, Bahía Blanca, Argentina
    3. Departamento de Geología, Universidad Nacional del Sur, Bahía Blanca, Argentina
    4. Universidad Tecnológica Nacional—Facultad Regional Bahía Blanca, Bahía Blanca, Argentina
    6. Universidad FASTA, Mar del Plata, Argentina
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
The seasonal and spatial distribution of colloidal and capsular extracellular carbohydrates was assessed in three sites in the supratidal flat from Rosales Port (middle zone of Bahía Blanca Estuary, Argentina) where microbial mats were developed. Extracellular carbohydrates, Chlorophyll a, phaeopigments, organic matter and moisture content were determined in surface (0–5 mm depth) and subsurface (5–10 mm depth) sediment layers. No differences in pH, Eh and temperature were observed among sites but seasonal differences were found in Eh and temperature. Organic matter content was statistically different among sites being higher in ST3, which has registered fine sediments. In turn, ST3 differs significantly from ST1 and ST2 in the Chlorophyll a concentrations in the subsurface layer and in colloidal and capsular carbohydrates content. In the three study sites, the extracellular carbohydrates concentration was higher in surface sediment layer than in subsurface layer. In addition, seasonal differences were found for all sites between surface and subsurface sediment layers. Maximum extracellular carbohydrates concentration was registered when the Chlorophyll a concentration was high. The relationship among the physicochemical parameters evaluated, grain size, Chlorophyll a and extracellular carbohydrates concentration allows defining two different areas in the Rosales Port despite the proximity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700