用户名: 密码: 验证码:
RFID-Based Mobile Robot Trajectory Tracking and Point Stabilization Through On-line Neighboring Optimal Control
详细信息    查看全文
  • 作者:M. Suruz Miah ; Wail Gueaieb
  • 关键词:Mobile robot navigation ; RFID systems ; Optimal control ; Trajectory tracking ; Robot stabilization ; Nonholonomic systems
  • 刊名:Journal of Intelligent and Robotic Systems
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:78
  • 期:3-4
  • 页码:377-399
  • 全文大小:7,535 KB
  • 参考文献:1.Aguiar, A.P., Hespanha, J.P.: Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty. IEEE Trans. Autom. Control 52(8), 1362-379 (2007)View Article MathSciNet
    2.Ahmed, N.U.: Dynamic Systems and Control with Applications. World Scientific, New Jersey (2006)View Article MATH
    3.Aicardi, M., Casalino, G., Bicchi, A., Balestrino, A.: Closed loop steering of unicycle like vehicles via lyapunov techniques. Robot. Autom. Mag. IEEE 2(1), 27-5 (1995)View Article
    4.Alanis, A.Y., Lopez-Franco, M., Arana-Daniel, N., Lopez-Franco, C.: Discrete-time neural control for electrically driven nonholonomic mobile robots. J. Adapt. Control Sig. Process. 26(7), 630-4 (2012)View Article MATH MathSciNet
    5.Bekkali, A., Matsumoto, M.: RFID indoor tracking system based on inter-tags distance measurements. In: Wireless Technology, Lecture Notes in Electrical Engineering, vol. 44, pp. 41-2. Springer, US (2009)
    6.Brockett, R.W.: Asymptotic stability and feedback stabilization. Differ. Geom. Control Theory 181-91 (1983)
    7.Cao, Z., Zhao, Y., Wang, S.: Trajectory tracking and point stabilization of noholonomic mobile robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1328-333 (2010)
    8.Chen, H., Ma, M.M., Wang, H., Liu, Z.Y., Cai, Z.X.: Moving horizon ?/em> ?/sub> tracking control of wheeled mobile robots with actuator saturation. IEEE Trans. Control Syst. Technol. 17(2), 449-7 (2009)View Article
    9.Choi, B.S., Lee, J.W., Lee, J.J., Park, K.T.: A hierarchical algorithm for indoor mobile robot localization using RFID sensor fusion. IEEE Trans. Ind. Electron. 58(6), 2226-235 (2011)View Article
    10.Chwa, D.: Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE Trans. Control Syst. Technol. 12(4), 637-44 (2004)View Article MathSciNet
    11.Chwa, D.: Tracking control of differential-drive wheeled mobile robots using a backstepping-like feedback linearization. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 40(6), 1285-295 (2010)View Article
    12.Cui, Q., Li, X., Wang, X., Zhang, M.: Backstepping control design on the dynamics of the omni-directional mobile robot. Appl. Mech. Mater. 203, 51- (2012)View Article
    13.Cui, R., Ge, S.S., How, B.V.E., Choo, Y.S.: Leader–follower formation control of underactuated autonomous underwater vehicles. Ocean Eng. 37(1), 1491-502 (2010)View Article
    14.Di Giampaolo, E., Martinelli, F.: A passive UHF-RFID system for the localization of an indoor autonomous vehicle. IEEE Trans. Ind. Electron. 59(10), 3961-970 (2012)View Article
    15.Fierro, R., Lewis, F.L.: Robust practical point stabilization of a nonholonomic mobile robot using neural networks. J. Intell. Robot. Syst. 20, 295-17 (1997)View Article
    16.Gonzalez, R., Fiacchini, M., Alamo, T., Guzman, J., Rodriguez, F.: Online robust tube-based mpc for time-varying systems: a practical approach. Int. J. Control. 84(6), 1157-170 (2011)View Article MATH MathSciNet
    17.Gueaieb, W., Miah, M.S.: An intelligent mobile robot navigation technique using RFID technology. IEEE Trans. Instrum. Meas. 57(9), 1908-917 (2008)View Article
    18.Hahnel, D., Burgard, W., Fox, D., Fishkin, K., Philipose, M.: Mapping and localization with RFID technology. In: IEEE International Conference on Robotics and Automation, pp. 1015-020. New Orleans (2004)
    19.Han, S., Lim, H., Lee, J.: An efficient localization scheme for a differential-driving mobile robot based on rfid system. IEEE Trans. Ind. Electron. 54(6), 3362-369 (2007)View Article
    20.Huang, H.C., Tsai, C.C.: Adaptive robust control of an omnidirectional mobile platform for autonomous service robots in polar coordinates. J. Intell. Robot. Syst. 51, 439-60 (2008)View Article
    21.Hwang, C.L., Chang, N.W.: Fuzzy decentralized sliding-mode control of a car-like mobile robot in distributed sensor-network spaces. IEEE Trans. Fuzzy Syst. 16(1), 97-09 (2008)View Article
    22.Hwang, S.Y., Song, J.B.: Monocular vision-based SLAM in indoor environment using corner, lamp, and door features from upward-looking camera. IEEE Trans. Ind. Electron. (2011). doi:10.-109/?TIE.-011.-109333
    23.Janabi-Sharifi, F., Marey, M.: A kalman-filter-based method for pose estimation in visual servoing. IEEE Trans. Robot. 26(5), 939-47 (2010)View Article
    24.Jang, J.O.: Adaptive neuro-fuzzy network control for a mobile robot. J. Intell. Robot. Syst. 62, 567-86 (2011)View Article MATH
    25.Jiang, Z.P., Lefeber, E., Nijmeijer, H.: Saturated stabilization and tracking of a nonholonomic mobile robot. Syst. Control Lett. 42(5), 327-2 (2001)View Article MATH MathSciNet
    26.Jiang, Z.P., Nijmeijer, H.: Tracking control of mobile robots: a case study in backstepping. Automatica 33(7), 1393- (1997)View Article MATH MathSciNet
    27.Jiang, Z.P., Nijmeijer, H.: A recursive technique for tracking control of nonholonomic systems in chained form. I
  • 作者单位:M. Suruz Miah (1)
    Wail Gueaieb (1)

    1. Machine Intelligence, Robotics, and Mechatronics (MIRaM) Lab, School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
  • 刊物类别:Engineering
  • 刊物主题:Automation and Robotics
    Electronic and Computer Engineering
    Artificial Intelligence and Robotics
    Mechanical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-0409
文摘
In this manuscript, we propose an on-line trajectory-tracking algorithm for nonholonomic Differential-Drive Mobile Robots (DDMRs) in the presence of possibly large parametric and measurement uncertainties. Most mobile robot tracking techniques that depend on reference RF beacons rely on approximating line-of-sight (LOS) distances between these beacons and the robot. The approximation of LOS is mostly performed using Received Signal Strength (RSS) measurements of signals propagating between the robot and RF beacons. However, an accurate mapping between RSS measurements and LOS distance remains a significant challenge and is almost impossible to achieve in an indoor reverberant environment. This paper contributes to the development of a neighboring optimal control strategy where the two major control tasks, trajectory tracking and point stabilization, are solved and treated as a unified manner using RSS measurements emitted from Radio Frequency IDentification (RFID) tags. The proposed control scheme is divided into two cascaded phases. The first phase provides the robot’s nominal control inputs (speeds) and its trajectory using full-state feedback. In the second phase, we design the neighboring optimal controller, where RSS measurements are used to better estimate the robot’s pose by employing an optimal filter. Simulation and experimental results are presented to demonstrate the performance of the proposed optimal feedback controller for solving the stabilization and trajectory tracking problems using a DDMR.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700