用户名: 密码: 验证码:
The role of the insulin-like growth factor (IGF) axis in osteogenic and odontogenic differentiation
详细信息    查看全文
  • 作者:H. Al-Kharobi (1)
    R. El-Gendy (1)
    D. A. Devine (1)
    J. Beattie (1)
  • 关键词:Insulin ; like growth factor axis ; Osteogenesis ; Odontogenesis ; Differentiation ; Dental pulp
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:71
  • 期:8
  • 页码:1469-1476
  • 全文大小:270 KB
  • 参考文献:1. Annunziata M, Granata R, Ghigo E (2011) The IGF system. Acta Diabetol 48(1):1- CrossRef
    2. Reiss K et al (1998) Molecular markers of IGF-I-mediated mitogenesis. Exp Cell Res 242(1):361-72 CrossRef
    3. Kooijman R (2006) Regulation of apoptosis by insulin-like growth factor (IGF)-I. Cytokine Growth Factor Rev 17(4):305-23 CrossRef
    4. Jones JI, Doerr ME, Clemmons DR (1995) Cell migration: interactions among integrins, IGFs and IGFBPs. Prog Growth Factor Res 6(2-):319-27 CrossRef
    5. Mauro L et al (2003) Role of the IGF-I receptor in the regulation of cell–cell adhesion: implications in cancer development and progression. J Cell Physiol 194(2):108-16 CrossRef
    6. Valentinis B, Baserga R (2001) IGF-I receptor signalling in transformation and differentiation. Mol Pathol 54(3):133-37 CrossRef
    7. Chesik D, De Keyser J, Wilczak N (2007) Insulin-like growth factor binding protein-2 as a regulator of IGF actions in CNS: implications in multiple sclerosis. Cytokine Growth Factor Rev 18(3-):267-78 CrossRef
    8. Duan C, Ren H, Gao S (2010) Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: roles in skeletal muscle growth and differentiation. Gen Comp Endocrinol 167(3):344-51 CrossRef
    9. Lochrie JD et al (2006) Insulin-like growth factor binding protein (IGFBP)-5 is upregulated during both differentiation and apoptosis in primary cultures of mouse mammary epithelial cells. J Cell Physiol 207(2):471-79 CrossRef
    10. Govoni KE (2012) Insulin-like growth factor-I molecular pathways in osteoblasts: potential targets for pharmacological manipulation. Curr Mol Pharmacol 5(2):143-52 CrossRef
    11. Patil AS, Sable RB, Kothari RM (2012) Role of insulin-like growth factors (IGFs), their receptors and genetic regulation in the chondrogenesis and growth of the mandibular condylar cartilage. J Cell Physiol 227(5):1796-804 CrossRef
    12. Chen G, Deng C, Li YP (2012) TGF-beta and BMP signalling in osteoblast differentiation and bone formation. Int J Biol Sci 8(2):272-88 CrossRef
    13. Marcellini S, Henriquez JP, Bertin A (2012) Control of osteogenesis by the canonical Wnt and BMP pathways in vivo: cooperation and antagonism between the canonical Wnt and BMP pathways as cells differentiate from osteochondroprogenitors to osteoblasts and osteocytes. BioEssays 34(11):953-62 CrossRef
    14. Froesch ER et al (1985) Actions of insulin-like growth factors. Annu Rev Physiol 47:443-67 CrossRef
    15. Tannenbaum GS, Guyda HJ, Posner BI (1983) Insulin-like growth factors: a role in growth hormone negative feedback and body weight regulation via brain. Science 220(4592):77-9 CrossRef
    16. Sussenbach JS et al (1993) Transcriptional and post-transcriptional regulation of the human IGF-II gene expression. Adv Exp Med Biol 343:63-1 CrossRef
    17. De Meyts P et al (2004) Structural biology of insulin and IGF-1 receptors. Novartis Found Symp 262:160-71 (discussion 171-, 265-) CrossRef
    18. Morgan DO et al (1987) Insulin-like growth factor II receptor as a multifunctional binding protein. Nature 329(6137):301-07 CrossRef
    19. Rainier S et al (1993) Relaxation of imprinted genes in human cancer. Nature 362(6422):747-49 CrossRef
    20. Xu Y et al (1993) Functional polymorphism in the parental imprinting of the human IGF2R gene. Biochem Biophys Res Commun 197(2):747-54 CrossRef
    21. Siddle K (2011) Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol 47(1):R1–R10 CrossRef
    22. Yu KT, Czech MP (1984) The type I insulin-like growth factor receptor mediates the rapid effects of multiplication-stimulating activity on membrane transport systems in rat soleus muscle. J Biol Chem 259(5):3090-095
    23. Beattie J et al (2008) Molecular interactions in the insulin-like growth factor (IGF) axis: a surface plasmon resonance (SPR) based biosensor study. Mol Cell Biochem 307(1-):221-36
    24. Denley A et al (2005) Molecular interactions of the IGF system. Cytokine Growth Factor Rev 16(4-):421-39 CrossRef
    25. Clemmons DR (2001) Use of mutagenesis to probe IGF-binding protein structure/function relationships. Endocr Rev 22(6):800-17 CrossRef
    26. Zhang M et al (2002) Targeted expression of a protease-resistant IGFBP-4 mutant in smooth muscle of transgenic mice results in IGFBP-4 stabilization and smooth muscle hypotrophy. J Biol Chem 277(24):21285-1290 CrossRef
    27. Fielder PJ et al (1990) Characterization of insulin-like growth factor binding proteins (IGFBPs) during gestation in mice: effects of hypophysectomy and an IGFBP-specific serum protease activity. Endocrinology 127(5):2270-280 CrossRef
    28. James PL et al (1993) A highly conserved insulin-like growth factor-binding protein (IGFBP-5) is expressed during myoblast differentiation. J Biol Chem 268(30):22305-2312
    29. Sureshbabu A et al (2012) IGFBP5 induces cell adhesion, increases cell survival and inhibits cell migration in MCF-7 human breast cancer cells. J Cell Sci 125(Pt 7):1693-705 CrossRef
    30. Beattie J et al (2006) Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis. Biochem J 395(1):1-9 CrossRef
    31. Stracke H et al (1984) Effect of growth hormone on osteoblasts and demonstration of somatomedin-C/IGF I in bone organ culture. Acta Endocrinol (Copenh) 107(1):16-4
    32. Scheven BA et al (1991) Effects of recombinant human insulin-like growth factor I and II (IGF-I/-II) and growth hormone (GH) on the growth of normal adult human osteoblast-like cells and human osteogenic sarcoma cells. Growth Regul 1(4):160-67
    33. Langdahl BL et al (1998) The effects of IGF-I and IGF-II on proliferation and differentiation of human osteoblasts and interactions with growth hormone. Eur J Clin Invest 28(3):176-83 CrossRef
    34. Ernst M, Rodan GA (1990) Increased activity of insulin-like growth factor (IGF) in osteoblastic cells in the presence of growth hormone (GH): positive correlation with the presence of the GH-induced IGF-binding protein BP-3. Endocrinology 127(2):807-14 CrossRef
    35. Wong GL et al (1990) IGF-I production by mouse osteoblasts. J Bone Miner Res 5(2):133-40 CrossRef
    36. Schmid C et al (1991) Intact but not truncated insulin-like growth factor binding protein-3 (IGFBP-3) blocks IGF I-induced stimulation of osteoblasts: control of IGF signalling to bone cells by IGFBP-3-specific proteolysis? Biochem Biophys Res Commun 179(1):579-85 CrossRef
    37. Slootweg MC et al (1990) The presence of classical insulin-like growth factor (IGF) type-I and -II receptors on mouse osteoblasts: autocrine/paracrine growth effect of IGFs? J Endocrinol 125(2):271-77 CrossRef
    38. Mochizuki S et al (2005) Effects of estriol on proliferative activity and expression of insulin-like growth factor-I (IGF-I) and IGF-I receptor mRNA in cultured human osteoblast-like osteosarcoma cells. Gynecol Endocrinol 20(1):6-2 CrossRef
    39. Yeh LC, Lee JC (2006) Co-transfection with the osteogenic protein (OP)-1 gene and the insulin-like growth factor (IGF)-I gene enhanced osteoblastic cell differentiation. Biochim Biophys Acta 1763(1):57-3 CrossRef
    40. Delany AM, Durant D, Canalis E (2001) Glucocorticoid suppression of IGF I transcription in osteoblasts. Mol Endocrinol 15(10):1781-789 CrossRef
    41. Yang S et al (2011) Foxo1 mediates insulin-like growth factor 1 (IGF1)/insulin regulation of osteocalcin expression by antagonizing Runx2 in osteoblasts. J Biol Chem 286(21):19149-9158 CrossRef
    42. Nakasaki M et al (2008) IGF-I secreted by osteoblasts acts as a potent chemotactic factor for osteoblasts. Bone 43(5):869-79 CrossRef
    43. Hatakeyama N et al (2008) IGF-I regulates tight-junction protein claudin-1 during differentiation of osteoblast-like MC3T3-E1 cells via a MAP-kinase pathway. Cell Tissue Res 334(2):243-54 CrossRef
    44. Yeh LC et al (2010) Protein kinase D mediates the synergistic effects of BMP-7 and IGF-I on osteoblastic cell differentiation. Growth Factors 28(5):318-28 CrossRef
    45. Zhang M et al (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signalling in bone matrix mineralization. J Biol Chem 277(46):44005-4012 CrossRef
    46. Gan Y et al (2010) Deletion of IGF-I receptor (IGF-IR) in primary osteoblasts reduces GH-induced STAT5 signalling. Mol Endocrinol 24(3):644-56 CrossRef
    47. Martinez DA et al (1995) Identification of functional insulin-like growth factor-II/mannose-6-phosphate receptors in isolated bone cells. J Cell Biochem 59(2):246-57 CrossRef
    48. Scharla SH et al (1994) Effect of tumor necrosis factor-alpha on the expression of insulin-like growth factor I and insulin-like growth factor binding protein 4 in mouse osteoblasts. Eur J Endocrinol 131(3):293-01 CrossRef
    49. Lalou C et al (1994) Interactions between insulin-like growth factor-I (IGF-I) and the system of plasminogen activators and their inhibitors in the control of IGF-binding protein-3 production and proteolysis in human osteosarcoma cells. Endocrinology 135(6):2318-326
    50. Andress DL, Birnbaum RS (1992) Human osteoblast-derived insulin-like growth factor (IGF) binding protein-5 stimulates osteoblast mitogenesis and potentiates IGF action. J Biol Chem 267(31):22467-2472
    51. Andress DL (1995) Comparison studies of IGFBP-5 binding to osteoblasts and osteoblast-derived extracellular matrix. Prog Growth Factor Res 6(2-):337-44 CrossRef
    52. Schmid C et al (1995) Expression, effects, and fate of IGFBP-5 are different in normal and malignant osteoblastic cells. Prog Growth Factor Res 6(2-):167-73 CrossRef
    53. Andress DL (1995) Heparin modulates the binding of insulin-like growth factor (IGF) binding protein-5 to a membrane protein in osteoblastic cells. J Biol Chem 270(47):28289-8296
    54. Chihara K, Sugimoto T (1997) The action of GH/IGF-I/IGFBP in osteoblasts and osteoclasts. Horm Res 48(Suppl 5):45-9 CrossRef
    55. Nasu M et al (2000) Estrogen modulates osteoblast proliferation and function regulated by parathyroid hormone in osteoblastic SaOS-2 cells: role of insulin-like growth factor (IGF)-I and IGF-binding protein-5. J Endocrinol 167(2):305-13 CrossRef
    56. Andress DL (2001) IGF-binding protein-5 stimulates osteoblast activity and bone accretion in ovariectomized mice. Am J Physiol Endocrinol Metab 281(2):E283–E288
    57. Amaar YG, Baylink DJ, Mohan S (2005) Ras-association domain family 1 protein, RASSF1C, is an IGFBP-5 binding partner and a potential regulator of osteoblast cell proliferation. J Bone Miner Res 20(8):1430-439 CrossRef
    58. Kim SK, Kwon JY, Nam TJ (2007) Involvement of ligand occupancy in insulin-like growth factor-I (IGF-I) induced cell growth in osteoblast like MC3T3-E1 cells. BioFactors 29(4):187-02 CrossRef
    59. Thrailkill KM et al (1995) Characterization of insulin-like growth factor-binding protein 5-degrading proteases produced throughout murine osteoblast differentiation. Endocrinology 136(8):3527-533
    60. Durham SK, Riggs BL, Conover CA (1994) The insulin-like growth factor-binding protein-4 (IGFBP-4)-IGFBP-4 protease system in normal human osteoblast-like cells: regulation by transforming growth factor-beta. J Clin Endocrinol Metab 79(6):1752-758
    61. Durham SK et al (1995) Regulation of insulin-like growth factor (IGF)-binding protein-4 availability in normal human osteoblast-like cells: role of endogenous IGFs. J Clin Endocrinol Metab 80(1):104-10
    62. Bunn RC et al (2004) IGFBP-4 degradation by pregnancy-associated plasma protein-A in MC3T3 osteoblasts. Biochem Biophys Res Commun 325(3):698-06 CrossRef
    63. Qin X et al (1999) Studies on the role of human insulin-like growth factor-II (IGF-II)-dependent IGF binding protein (hIGFBP)-4 protease in human osteoblasts using protease-resistant IGFBP-4 analogs. J Bone Miner Res 14(12):2079-088 CrossRef
    64. Zhang M et al (2003) Paracrine overexpression of IGFBP-4 in osteoblasts of transgenic mice decreases bone turnover and causes global growth retardation. J Bone Miner Res 18(5):836-43 CrossRef
    65. Strohbach C et al (2008) Potential involvement of the interaction between insulin-like growth factor binding protein (IGFBP)-6 and LIM mineralization protein (LMP)-1 in regulating osteoblast differentiation. J Cell Biochem 104(5):1890-905 CrossRef
    66. Perez-Casellas LA et al (2009) Nuclear factor I transcription factors regulate IGF binding protein 5 gene transcription in human osteoblasts. Biochim Biophys Acta 1789(2):78-7 CrossRef
    67. Schmid C et al (1994) Growth hormone and parathyroid hormone stimulate IGFBP-3 in rat osteoblasts. Am J Physiol 267(2 Pt 1):E226–E233
    68. Schmid C et al (1996) 1 alpha, 25-dihydroxyvitamin D3 increases IGF binding protein-5 expression in cultured osteoblasts. FEBS Lett 392(1):21-4 CrossRef
    69. Schmid C et al (1992) Triiodothyronine (T3) stimulates insulin-like growth factor (IGF)-1 and IGF binding protein (IGFBP)-2 production by rat osteoblasts in vitro. Acta Endocrinol (Copenh) 126(5):467-73
    70. Lalou C et al (1994) Interactions of insulin-like growth factors (IGF) and their binding proteins with the plasminogen/plasmin activator system in cultured osteoblasts. Ann Endocrinol (Paris) 55(2):103-07
    71. Hurley MM, Abreu C, Hakeda Y (1995) Basic fibroblast growth factor regulates IGF-I binding proteins in the clonal osteoblastic cell line MC3T3-E1. J Bone Miner Res 10(2):222-30 CrossRef
    72. Thrailkill KM et al (1995) Differentiation of MC3T3-E1 osteoblasts is associated with temporal changes in the expression of IGF-I and IGFBPs. Bone 17(3):307-13 CrossRef
    73. Birnbaum RS, Bowsher RR, Wiren KM (1995) Changes in IGF-I and -II expression and secretion during the proliferation and differentiation of normal rat osteoblasts. J Endocrinol 144(2):251-59 CrossRef
    74. Palermo C et al (2004) Potentiating role of IGFBP-2 on IGF-II-stimulated alkaline phosphatase activity in differentiating osteoblasts. Am J Physiol Endocrinol Metab 286(4):E648–E657 CrossRef
    75. Schmid C et al (1995) Effects of insulin-like growth factor (IGF) binding proteins (BPs)-3 and -6 on DNA synthesis of rat osteoblasts: further evidence for a role of auto-/paracrine IGF I but not IGF II in stimulating osteoblast growth. Biochem Biophys Res Commun 212(1):242-48 CrossRef
    76. Middleton J et al (1995) Osteoblasts and osteoclasts in adult human osteophyte tissue express the mRNAs for insulin-like growth factors I and II and the type 1 IGF receptor. Bone 16(3):287-93 CrossRef
    77. Conover CA, Khosla S (2003) Role of extracellular matrix in insulin-like growth factor (IGF) binding protein-2 regulation of IGF-II action in normal human osteoblasts. Growth Horm IGF Res 13(6):328-35 CrossRef
    78. Abdallah BM (2006) Osteoblast differentiation of NIH3T3 fibroblasts is associated with changes in the IGF-I/IGFBP expression pattern. Cell Mol Biol Lett 11(4):461-74 CrossRef
    79. Nakashima M (1992) The effects of growth factors on DNA synthesis, proteoglycan synthesis and alkaline phosphatase activity in bovine dental pulp cells. Arch Oral Biol 37(3):231-36 CrossRef
    80. Denholm IA, Moule AJ, Bartold PM (1998) The behaviour and proliferation of human dental pulp cell strains in vitro, and their response to the application of platelet-derived growth factor-BB and insulin-like growth factor-1. Int Endod J 31(4):251-58 CrossRef
    81. Joseph BK et al (1996) In situ hybridization evidence for a paracrine/autocrine role for insulin-like growth factor-I in tooth development. Growth Factors 13(1-):11-7 CrossRef
    82. Li H et al (1998) Growth hormone and insulin-like growth factor I induce bone morphogenetic proteins 2 and 4: a mediator role in bone and tooth formation? Endocrinology 139(9):3855-862
    83. Onishi T et al (1999) Stimulation of proliferation and differentiation of dog dental pulp cells in serum-free culture medium by insulin-like growth factor. Arch Oral Biol 44(4):361-71 CrossRef
    84. Shi S, Robey PG, Gronthos S (2001) Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 29(6):532-39 CrossRef
    85. Caviedes-Bucheli J et al (2004) Expression of insulin-like growth factor-1 receptor in human pulp tissue. J Endod 30(11):767-69 CrossRef
    86. Reichenmiller KM et al (2004) IGFs, IGFBPs, IGF-binding sites and biochemical markers of bone metabolism during differentiation in human pulp fibroblasts. Horm Res 62(1):33-9 CrossRef
    87. Gotz W et al (2006) Immunohistochemical localization of components of the insulin-like growth factor system in human permanent teeth. Arch Oral Biol 51(5):387-95 CrossRef
    88. Yamamoto T, Oida S, Inage T (2006) Gene expression and localization of insulin-like growth factors and their receptors throughout amelogenesis in rat incisors. J Histochem Cytochem 54(2):243-52 CrossRef
    89. Caviedes-Bucheli J et al (2009) Expression of insulin-like growth factor-1 and proliferating cell nuclear antigen in human pulp cells of teeth with complete and incomplete root development. Int Endod J 42(8):686-93 CrossRef
    90. Mori G et al (2011) Dental pulp stem cells: osteogenic differentiation and gene expression. Ann NY Acad Sci 1237:47-2 CrossRef
    91. Mori G et al (2010) Osteogenic properties of human dental pulp stem cells. J Biol Regul Homeost Agents 24(2):167-75
    92. Wang S et al (2012) Insulin-like growth factor 1 can promote the osteogenic differentiation and osteogenesis of stem cells from apical papilla. Stem Cell Res 8(3):346-56 CrossRef
  • 作者单位:H. Al-Kharobi (1)
    R. El-Gendy (1)
    D. A. Devine (1)
    J. Beattie (1)

    1. Leeds University School of Dentistry, University of Leeds, Clarendon Way, Leeds, LS2 9LU, UK
  • ISSN:1420-9071
文摘
The insulin-like growth factor (IGF) axis is a multicomponent molecular network which has important biological functions in the development and maintenance of differentiated tissue function(s). One of the most important functions of the IGF axis is the control of skeletal tissue metabolism by the finely tuned regulation of the process of osteogenesis. To achieve this, the IGF axis controls the activity of several cell types—osteoprogenitor cells, osteoblasts, osteocytes and osteoclasts to achieve the co-ordinated development of appropriate hard tissue structure and associated matrix deposition. In addition, there is an increasing awareness that the IGF axis also plays a role in the process of odontogenesis (tooth formation). In this review, we highlight some of the key findings in both of these areas. A further understanding of the role of the IGF axis in hard tissue biology may contribute to tissue regeneration strategies in cases of skeletal tissue trauma.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700