用户名: 密码: 验证码:
EET signaling in cancer
详细信息    查看全文
  • 作者:Dipak Panigrahy (1)
    Emily R. Greene (1)
    Ambra Pozzi (2)
    Dao Wen Wang (3)
    Darryl C. Zeldin (4)
  • 关键词:Cytochrome P450 epoxygenase ; EETs ; Cancer ; Metastasis ; Arachidonic acid
  • 刊名:Cancer and Metastasis Reviews
  • 出版年:2011
  • 出版时间:4 - December 2011
  • 年:2011
  • 卷:30
  • 期:3
  • 页码:525-540
  • 全文大小:544KB
  • 参考文献:1. Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. / Nature Reviews Cancer, 10, 181-93.
    2. Pidgeon, G. P., Lysaght, J., Krishnamoorthy, S., Reynolds, J. V., O’Byrne, K., Nie, D., et al. (2007). Lipoxygenase metabolism: Roles in tumor progression and survival. / Cancer Metastasis Reviews, 26, 503-24.
    3. Zeldin, D. C. (2001). Epoxygenase pathways of arachidonic acid metabolism. / Journal of Biological Chemistry, 276, 36059-6062.
    4. C. N. Serhan & J. Z. Haeggstrom (Eds.) (2009). / Lipid mediators in acute inflammation and resolution: Eicosanoids, PAF, resolvins, and protectins. Cambridge: Cambridge University Press.
    5. Imig, J. D., & Hammock, B. D. (2009). Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. / Nature Reviews Drug Discovery, 8, 794-05.
    6. Roman, R. J. (2002). P-450 metabolites of arachidonic acid in the control of cardiovascular function. / Physiological Reviews, 82, 131-85.
    7. Fleming, I. (2007). Epoxyeicosatrienoic acids, cell signaling and angiogenesis. / Prostaglandins & Other Lipid Mediators, 82, 60-7.
    8. Spector, A. A., & Norris, A. W. (2007). Action of epoxyeicosatrienoic acids on cellular function. / American Journal of Physiology Cell Physiology, 292, C996-012.
    9. Fleming, I. (2008). Vascular cytochrome p450 enzymes: Physiology and pathophysiology. / Trends in Cardiovascular Medicine, 18, 20-5.
    10. Campbell, W. B., & Falck, J. R. (2007). Arachidonic acid metabolites as endothelium-derived hyperpolarizing factors. / Hypertension, 49, 590-96.
    11. Panigrahy, D., Kaipainen, A., Greene, E. R., & Huang, S. (2010). Cytochrome P450-derived eicosanoids: The neglected pathway in cancer. / Cancer Metastasis Reviews, 29, 723-35.
    12. Jiang, J. G., Ning, Y. G., Chen, C., Ma, D., Liu, Z. J., Yang, S., et al. (2007). Cytochrome p450 epoxygenase promotes human cancer metastasis. / Cancer Research, 67, 6665-674.
    13. Xu, X., Zhang, X. A., & Wang, D. W. (2011). The roles of CYP450 epoxygenases and metabolites, epoxyeicosatrienoic acids, in cardiovascular and malignant diseases. / Advance Drug Delivery Review, 63, 597-09.
    14. Pozzi, A., Ibanez, M. R., Gatica, A. E., Yang, S., Wei, S., Mei, S., et al. (2007). Peroxisomal proliferator-activated receptor-alpha-dependent inhibition of endothelial cell proliferation and tumorigenesis. / Journal of Biological Chemistry, 282, 17685-7695.
    15. Pozzi, A., & Capdevila, J. H. (2008). PPARalpha ligands as antitumorigenic and antiangiogenic agents. / PPAR Research, 2008, 906542.
    16. Pozzi, A., Popescu, V., Yang, S., Mei, S., Shi, M., Puolitaival, S. M., et al. (2010). The anti-tumorigenic properties of peroxisomal proliferator-activated receptor alpha are arachidonic acid epoxygenase-mediated. / Journal of Biological Chemistry, 285, 12840-2850.
    17. Pozzi, A., Macias-Perez, I., Abair, T., Wei, S., Su, Y., Zent, R., et al. (2005). Characterization of 5,6- and 8,9-epoxyeicosatrienoic acids (5,6- and 8,9-EET) as potent / in vivo angiogenic lipids. / Journal of Biological Chemistry, 280, 27138-7146.
    18. Munzenmaier, D. H., & Harder, D. R. (2000). Cerebral microvascular endothelial cell tube formation: Role of astrocytic epoxyeicosatrienoic acid release. / American Journal of Physiology Heart and Circulatory Physiology, 278, H1163-167.
    19. Wang, Y., Wei, X., Xiao, X., Hui, R., Card, J. W., Carey, M. A., et al. (2005). Arachidonic acid epoxygenase metabolites stimulate endothelial cell growth and angiogenesis via mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways. / Journal of Pharmacology and Experimental Therapeutics, 314, 522-32.
    20. Node, K., Huo, Y., Ruan, X., Yang, B., Spiecker, M., Ley, K., et al. (1999). Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. / Science, 285, 1276-279.
    21. Hardwick, J. P., Song, B. J., Huberman, E., & Gonzalez, F. J. (1987). Isolation, complementary DNA sequence, and regulation of rat hepatic lauric acid omega-hydroxylase (cytochrome P-450LA omega). Identification of a new cytochrome P-450 gene family. / Journal of Biological Chemistry, 262, 801-10.
    22. Powell, P. K., Wolf, I., Jin, R., & Lasker, J. M. (1998). Metabolism of arachidonic acid to 20-hydroxy-5,8,11,14-eicosatetraenoic acid by P450 enzymes in human liver: involvement of CYP4F2 and CYP4A11. / Journal of Pharmacology and Experimental Therapeutics, 285, 1327-336.
    23. Miyata, N., & Roman, R. J. (2005). Role of 20-hydroxyeicosatetraenoic acid (20-HETE) in vascular system. / Journal of Smooth Muscle Research, 41, 175-93.
    24. Fisslthaler, B., Popp, R., Kiss, L., Potente, M., Harder, D. R., Fleming, I., et al. (1999). Cytochrome P450 2C is an EDHF synthase in coronary arteries. / Nature, 401, 493-97.
    25. Kaspera, R., & Totah, R. A. (2009). Epoxyeicosatrienoic acids: Formation, metabolism and potential role in tissue physiology and pathophysiology. / Expert Opinion on Drug Metabolism & Toxicology, 5, 757-71.
    26. Zeldin, D. C., Kobayashi, J., Falck, J. R., Winder, B. S., Hammock, B. D., Snapper, J. R., et al. (1993). Regio- and enantiofacial selectivity of epoxyeicosatrienoic acid hydration by cytosolic epoxide hydrolase. / Journal of Biological Chemistry, 268, 6402-407.
    27. Yu, Z., Xu, F., Huse, L. M., Morisseau, C., Draper, A. J., Newman, J. W., et al. (2000). Soluble epoxide hydrolase regulates hydrolysis of vasoactive epoxyeicosatrienoic acids. / Circulation Research, 87, 992-98.
    28. Simpkins, A. N., Rudic, R. D., Schreihofer, D. A., Roy, S., Manhiani, M., Tsai, H. J., et al. (2009). Soluble epoxide inhibition is protective against cerebral ischemia via vascular and neural protection. / American Journal of Pathology, 174, 2086-095.
    29. Chacos, N., Capdevila, J., Falck, J. R., Manna, S., Martin-Wixtrom, C., Gill, S. S., et al. (1983). The reaction of arachidonic acid epoxides (epoxyeicosatrienoic acids) with a cytosolic epoxide hydrolase. / Archives of Biochemistry and Biophysics, 223, 639-48.
    30. Capdevila, J. H., Harris, R. C., & Falck, J. R. (2002). Microsomal cytochrome P450 and eicosanoid metabolism. / Cellular and Molecular Life Sciences, 59, 780-89.
    31. Capdevila, J., Chacos, N., Werringloer, J., Prough, R. A., & Estabrook, R. W. (1981). Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid. / Proceedings of the National Academy of Sciences of the United States of America, 78, 5362-366.
    32. Capdevila, J., Marnett, L. J., Chacos, N., Prough, R. A., & Estabrook, R. W. (1982). Cytochrome P-450-dependent oxygenation of arachidonic acid to hydroxyicosatetraenoic acids. / Proceedings of the National Academy of Sciences of the United States of America, 79, 767-70.
    33. Morrison, A. R., & Pascoe, N. (1981). Metabolism of arachidonate through NADPH-dependent oxygenase of renal cortex. / Proceedings of the National Academy of Sciences of the United States of America, 78, 7375-378.
    34. Oliw, E. H., Lawson, J. A., Brash, A. R., & Oates, J. A. (1981). Arachidonic acid metabolism in rabbit renal cortex. Formation of two novel dihydroxyeicosatrienoic acids. / Journal of Biological Chemistry, 256, 9924-931.
    35. Campbell, W. B., Gebremedhin, D., Pratt, P. F., & Harder, D. R. (1996). Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. / Circulation Research, 78, 415-23.
    36. Zeldin, D. C., Foley, J., Ma, J., Boyle, J. E., Pascual, J. M., Moomaw, C. R., et al. (1996). CYP2J subfamily P450s in the lung: Expression, localization, and potential functional significance. / Molecular Pharmacology, 50, 1111-117.
    37. Morisseau, C., Goodrow, M. H., Dowdy, D., Zheng, J., Greene, J. F., Sanborn, J. R., et al. (1999). Potent urea and carbamate inhibitors of soluble epoxide hydrolases. / Proceedings of the National Academy of Sciences of the United States of America, 96, 8849-854.
    38. Nelson, D. R., Zeldin, D. C., Hoffman, S. M., Maltais, L. J., Wain, H. M., & Nebert, D. W. (2004). Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. / Pharmacogenetics, 14, 1-8.
    39. Nebert, D. W., & Russell, D. W. (2002). Clinical importance of the cytochromes P450. / Lancet, 360, 1155-162.
    40. Wang, H., Zhao, Y., Bradbury, J. A., Graves, J. P., Foley, J., Blaisdell, J. A., et al. (2004). Cloning, expression, and characterization of three new mouse cytochrome p450 enzymes and partial characterization of their fatty acid oxidation activities. / Molecular Pharmacology, 65, 1148-158.
    41. Finta, C., & Zaphiropoulos, P. G. (2000). The human CYP2C locus: A prototype for intergenic and exon repetition splicing events. / Genomics, 63, 433-38.
    42. Waxman, D. J., Chen, L., Hecht, J. E., & Jounaidi, Y. (1999). Cytochrome P450-based cancer gene therapy: Recent advances and future prospects. / Drug Metabolism Reviews, 31, 503-22.
    43. Nebert, D. W., & Dalton, T. P. (2006). The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. / Nature Reviews Cancer, 6, 947-60.
    44. Swanson, H. I., Njar, V. C., Yu, Z., Castro, D. J., Gonzalez, F. J., Williams, D. E., et al. (2010). Targeting drug-metabolizing enzymes for effective chemoprevention and chemotherapy. / Drug Metabolism and Disposition, 38, 539-44.
    45. Lu, H., Chen, C. S., & Waxman, D. J. (2009). Potentiation of methoxymorpholinyl doxorubicin antitumor activity by P450 3A4 gene transfer. / Cancer Gene Therapy, 16, 393-04.
    46. Jordan, V. C., & Brodie, A. M. (2007). Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer. / Steroids, 72, 7-5.
    47. Bruno, R. D., & Njar, V. C. (2007). Targeting cytochrome P450 enzymes: A new approach in anti-cancer drug development. / Bioorganic & Medicinal Chemistry, 15, 5047-060.
    48. Moreira, V. M., Salvador, J. A., Vasaitis, T. S., & Njar, V. C. (2008). CYP17 inhibitors for prostate cancer treatment—An update. / Current Medicinal Chemistry, 15, 868-99.
    49. Rosolowsky, M., & Campbell, W. B. (1996). Synthesis of hydroxyeicosatetraenoic (HETEs) and epoxyeicosatrienoic acids (EETs) by cultured bovine coronary artery endothelial cells. / Biochimica et Biophysica Acta, 1299, 267-77.
    50. Fleming, I. (2007). DiscrEET regulators of homeostasis: Epoxyeicosatrienoic acids, cytochrome P450 epoxygenases and vascular inflammation. / Trends in Pharmacological Sciences, 28, 448-52.
    51. Alkayed, N. J., Narayanan, J., Gebremedhin, D., Medhora, M., Roman, R. J., & Harder, D. R. (1996). Molecular characterization of an arachidonic acid epoxygenase in rat brain astrocytes. / Stroke, 27, 971-79.
    52. Amruthesh, S. C., Boerschel, M. F., McKinney, J. S., Willoughby, K. A., & Ellis, E. F. (1993). Metabolism of arachidonic acid to epoxyeicosatrienoic acids, hydroxyeicosatetraenoic acids, and prostaglandins in cultured rat hippocampal astrocytes. / Journal of Neurochemistry, 61, 150-59.
    53. Wu, S., Moomaw, C. R., Tomer, K. B., Falck, J. R., & Zeldin, D. C. (1996). Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. / Journal of Biological Chemistry, 271, 3460-468.
    54. Wu, S., Chen, W., Murphy, E., Gabel, S., Tomer, K. B., Foley, J., et al. (1997). Molecular cloning, expression, and functional significance of a cytochrome P450 highly expressed in rat heart myocytes. / Journal of Biological Chemistry, 272, 12551-2559.
    55. Nakayama, K., Nitto, T., Inoue, T., & Node, K. (2008). Expression of the cytochrome P450 epoxygenase CYP2J2 in human monocytic leukocytes. / Life Sciences, 83, 339-45.
    56. Nieves, D., & Moreno, J. J. (2006). Hydroxyeicosatetraenoic acids released through the cytochrome P-450 pathway regulate 3T6 fibroblast growth. / Journal of Lipid Research, 47, 2681-689.
    57. Muthalif, M. M., Benter, I. F., Karzoun, N., Fatima, S., Harper, J., Uddin, M. R., et al. (1998). 20-Hydroxyeicosatetraenoic acid mediates calcium/calmodulin-dependent protein kinase II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. / Proceedings of the National Academy of Sciences of the United States of America, 95, 12701-2706.
    58. Schwartzman, M. L., Falck, J. R., Yadagiri, P., & Escalante, B. (1989). Metabolism of 20-hydroxyeicosatetraenoic acid by cyclooxygenase. Formation and identification of novel endothelium-dependent vasoconstrictor metabolites. / Journal of Biological Chemistry, 264, 11658-1662.
    59. Kaduce, T. L., Fang, X., Harmon, S. D., Oltman, C. L., Dellsperger, K. C., Teesch, L. M., et al. (2004). 20-hydroxyeicosatetraenoic acid (20-HETE) metabolism in coronary endothelial cells. / Journal of Biological Chemistry, 279, 2648-656.
    60. Moreno, J. J. (2009). New aspects of the role of hydroxyeicosatetraenoic acids in cell growth and cancer development. / Biochemical Pharmacology, 77, 1-0.
    61. Ayajiki, K., Fujioka, H., Toda, N., Okada, S., Minamiyama, Y., Imaoka, S., et al. (2003). Mediation of arachidonic acid metabolite(s) produced by endothelial cytochrome P-450 3A4 in monkey arterial relaxation. / Hypertension Research, 26, 237-43.
    62. Stark, K., Dostalek, M., & Guengerich, F. P. (2008). Expression and purification of orphan cytochrome P450 4X1 and oxidation of anandamide. / FEBS Journal, 275, 3706-717.
    63. Chuang, S. S., Helvig, C., Taimi, M., Ramshaw, H. A., Collop, A. H., Amad, M., et al. (2004). CYP2U1, a novel human thymus- and brain-specific cytochrome P450, catalyzes omega- and (omega-1)-hydroxylation of fatty acids. / Journal of Biological Chemistry, 279, 6305-314.
    64. Yang, W., Holmes, B. B., Gopal, V. R., Kishore, R. V., Sangras, B., Yi, X. Y., et al. (2007). Characterization of 14,15-epoxyeicosatrienoyl-sulfonamides as 14,15-epoxyeicosatrienoic acid agonists: Use for studies of metabolism and ligand binding. / Journal of Pharmacology and Experimental Therapeutics, 321, 1023-031.
    65. Chen, Y., Falck, J. R., Manthati, V. L., Jat, J. L., & Campbell, W. B. (2011). 20-Iodo-14,15-epoxyeicosa-8( / Z)-enoyl-3-azidophenylsulfonamide: Photoaffinity labeling of a 14,15-epoxyeicosatrienoic acid receptor. / Biochemistry, 50, 3840-848.
    66. Spector, A. A. (2009). Arachidonic acid cytochrome P450 epoxygenase pathway. / Journal of Lipid Research, 50(Suppl), S52-6.
    67. Karara, A., Wei, S., Spady, D., Swift, L., Capdevila, J. H., & Falck, J. R. (1992). Arachidonic acid epoxygenase: Structural characterization and quantification of epoxyeicosatrienoates in plasma. / Biochemical and Biophysical Research Communications, 182, 1320-325.
    68. Spector, A. A., Fang, X., Snyder, G. D., & Weintraub, N. L. (2004). Epoxyeicosatrienoic acids (EETs): Metabolism and biochemical function. / Progress in Lipid Research, 43, 55-0.
    69. Widstrom, R. L., Norris, A. W., Van Der Veer, J., & Spector, A. A. (2003). Fatty acid-binding proteins inhibit hydration of epoxyeicosatrienoic acids by soluble epoxide hydrolase. / Biochemistry, 42, 11762-1767.
    70. Liu, Y., Zhang, Y., Schmelzer, K., Lee, T. S., Fang, X., Zhu, Y., et al. (2005). The antiinflammatory effect of laminar flow: The role of PPARgamma, epoxyeicosatrienoic acids, and soluble epoxide hydrolase. / Proceedings of the National Academy of Sciences of the United States of America, 102, 16747-6752.
    71. Deng, Y., Theken, K. N., & Lee, C. R. (2010). Cytochrome P450 epoxygenases, soluble epoxide hydrolase, and the regulation of cardiovascular inflammation. / Journal of Molecular and Cellular Cardiology, 48, 331-41.
    72. Cowart, L. A., Wei, S., Hsu, M. H., Johnson, E. F., Krishna, M. U., Falck, J. R., et al. (2002). The CYP4A isoforms hydroxylate epoxyeicosatrienoic acids to form high affinity peroxisome proliferator-activated receptor ligands. / Journal of Biological Chemistry, 277, 35105-5112.
    73. Fang, X., Hu, S., Watanabe, T., Weintraub, N. L., Snyder, G. D., Yao, J., et al. (2005). Activation of peroxisome proliferator-activated receptor alpha by substituted urea-derived soluble epoxide hydrolase inhibitors. / Journal of Pharmacology and Experimental Therapeutics, 314, 260-70.
    74. Fang, X., Hu, S., Xu, B., Snyder, G. D., Harmon, S., Yao, J., et al. (2006). 14,15-Dihydroxyeicosatrienoic acid activates peroxisome proliferator-activated receptor-alpha. / American Journal of Physiology Heart and Circulatory Physiology, 290, H55-3.
    75. Folkman, J. (2007). Angiogenesis: An organizing principle for drug discovery? / Nature Reviews Drug Discovery, 6, 273-86.
    76. Hafner, C., Reichle, A., & Vogt, T. (2005). New indications for established drugs: combined tumor-stroma-targeted cancer therapy with PPARgamma agonists, COX-2 inhibitors, mTOR antagonists and metronomic chemotherapy. / Current Cancer Drug Targets, 5, 393-19.
    77. Balkwill, F., & Mantovani, A. (2010). Cancer and inflammation: Implications for pharmacology and therapeutics. / Clinical Pharmacology and Therapeutics, 87, 401-06.
    78. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. / Nature, 420, 860-67.
    79. Folkman, J. (1990). What is the evidence that tumors are angiogenesis-dependent? / Journal of the National Cancer Institute, 82, 4-.
    80. McAllister, S. S., & Weinberg, R. A. (2010). Tumor–host interactions: A far-reaching relationship. / Journal of Clinical Oncology, 28, 4022-028.
    81. Panigrahy, D., Huang, S., Kieran, M. W., & Kaipainen, A. (2005). PPARgamma as a therapeutic target for tumor angiogenesis and metastasis. / Cancer Biology & Therapy, 4, 687-93.
    82. Bhowmick, N. A., Neilson, E. G., & Moses, H. L. (2004). Stromal fibroblasts in cancer initiation and progression. / Nature, 432, 332-37.
    83. Folkman, J. (1971). Tumor angiogenesis: Therapeutic implications. / The New England Journal of Medicine, 285, 1182-186.
    84. Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. / Cell, 121, 335-48.
    85. Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. / Nature Reviews Cancer, 9, 239-52.
    86. Lin, E. Y., & Pollard, J. W. (2004). Role of infiltrated leucocytes in tumour growth and spread. / British Journal of Cancer, 90, 2053-058.
    87. de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. / Nature Reviews Cancer, 6, 24-7.
    88. Zhang, L., Conejo-Garcia, J. R., Katsaros, D., Gimotty, P. A., Massobrio, M., Regnani, G., et al. (2003). Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. / The New England Journal of Medicine, 348, 203-13.
    89. Clevers, H. (2004). At the crossroads of inflammation and cancer. / Cell, 118, 671-74.
    90. Aggarwal, B. B., Shishodia, S., Sandur, S. K., Pandey, M. K., & Sethi, G. (2006). Inflammation and cancer: How hot is the link? / Biochemical Pharmacology, 72, 1605-621.
    91. Seitz, C. S., Lin, Q., Deng, H., & Khavari, P. A. (1998). Alterations in NF-kappaB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-kappaB. / Proceedings of the National Academy of Sciences of the United States of America, 95, 2307-312.
    92. Dajee, M., Lazarov, M., Zhang, J. Y., Cai, T., Green, C. L., Russell, A. J., et al. (2003). NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. / Nature, 421, 639-43.
    93. Karin, M. (2009). NF-kappaB as a critical link between inflammation and cancer. / Cold Spring Harbor Perspectives in Biology, 1, a000141.
    94. Kaipainen, A., Kieran, M. W., Huang, S., Butterfield, C., Bielenberg, D., Mostoslavsky, G., et al. (2007). PPARalpha deficiency in inflammatory cells suppresses tumor growth. / PLoS One, 2, e260.
    95. Panigrahy, D., Kaipainen, A., Kieran, M. W., & Huang, S. (2008). PPARs: A double-edged sword in cancer therapy? / PPAR Research, 2008, 350351.
    96. Ono, M. (2008). Molecular links between tumor angiogenesis and inflammation: Inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. / Cancer Science, 99, 1501-506.
    97. Salcedo, R., Zhang, X., Young, H. A., Michael, N., Wasserman, K., Ma, W. H., et al. (2003). Angiogenic effects of prostaglandin E2 are mediated by up-regulation of CXCR4 on human microvascular endothelial cells. / Blood, 102, 1966-977.
    98. Freedman, R. S., Wang, E., Voiculescu, S., Patenia, R., Bassett, R. L., Jr., Deavers, M., et al. (2007). Comparative analysis of peritoneum and tumor eicosanoids and pathways in advanced ovarian cancer. / Clinical Cancer Research, 13, 5736-744.
    99. Ishizuka, T., Cheng, J., Singh, H., Vitto, M. D., Manthati, V. L., Falck, J. R., et al. (2008). 20-Hydroxyeicosatetraenoic acid stimulates nuclear factor-kappaB activation and the production of inflammatory cytokines in human endothelial cells. / Journal of Pharmacology and Experimental Therapeutics, 324, 103-10.
    100. Guo, A. M., Arbab, A. S., Falck, J. R., Chen, P., Edwards, P. A., Roman, R. J., et al. (2007). Activation of vascular endothelial growth factor through reactive oxygen species mediates 20-hydroxyeicosatetraenoic acid-induced endothelial cell proliferation. / Journal of Pharmacology and Experimental Therapeutics, 321, 18-7.
    101. Dhanasekaran, A., Bodiga, S., Gruenloh, S., Gao, Y., Dunn, L., Falck, J. R., et al. (2009). 20-HETE increases survival and decreases apoptosis in pulmonary arteries and pulmonary artery endothelial cells. / American Journal of Physiology Heart and Circulatory Physiology, 296, H777-86.
    102. Chen, P., Guo, M., Wygle, D., Edwards, P. A., Falck, J. R., Roman, R. J., et al. (2005). Inhibitors of cytochrome P450 4A suppress angiogenic responses. / American Journal of Pathology, 166, 615-24.
    103. Ljubimov, A. V., & Grant, M. B. (2005). P450 in the angiogenesis affair: The unusual suspect. / American Journal of Pathology, 166, 341-44.
    104. Amaral, S. L., Maier, K. G., Schippers, D. N., Roman, R. J., & Greene, A. S. (2003). CYP4A metabolites of arachidonic acid and VEGF are mediators of skeletal muscle angiogenesis. / American Journal of Physiology Heart and Circulatory Physiology, 284, H1528-535.
    105. Sa, G., Murugesan, G., Jaye, M., Ivashchenko, Y., & Fox, P. L. (1995). Activation of cytosolic phospholipase A2 by basic fibroblast growth factor via a p42 mitogen-activated protein kinase-dependent phosphorylation pathway in endothelial cells. / Journal of Biological Chemistry, 270, 2360-366.
    106. Jiang, M., Mezentsev, A., Kemp, R., Byun, K., Falck, J. R., Miano, J. M., et al. (2004). Smooth muscle-specific expression of CYP4A1 induces endothelial sprouting in renal arterial microvessels. / Circulation Research, 94, 167-74.
    107. Miyata, N., Taniguchi, K., Seki, T., Ishimoto, T., Sato-Watanabe, M., Yasuda, Y., et al. (2001). HET0016, a potent and selective inhibitor of 20-HETE synthesizing enzyme. / British Journal of Pharmacology, 133, 325-29.
    108. Guo, M., Roman, R. J., Falck, J. R., Edwards, P. A., & Scicli, A. G. (2005). Human U251 glioma cell proliferation is suppressed by HET0016 [ / N-hydroxy- / N-(4-butyl-2-methylphenyl)formamidine], a selective inhibitor of CYP4A. / Journal of Pharmacology and Experimental Therapeutics, 315, 526-33.
    109. Jacobs, E. R., Zhu, D., Gruenloh, S., Lopez, B., & Medhora, M. (2006). VEGF-induced relaxation of pulmonary arteries is mediated by endothelial cytochrome P-450 hydroxylase. / American Journal of Physiology Lung Cellular and Molecular Physiology, 291, L369-77.
    110. Guo, A. M., Sheng, J., Scicli, G. M., Arbab, A. S., Lehman, N. L., Edwards, P. A., et al. (2008). Expression of CYP4A1 in U251 human glioma cell induces hyperproliferative phenotype / in vitro and rapidly growing tumors / in vivo. / Journal of Pharmacology and Experimental Therapeutics, 327, 10-9.
    111. Guo, M., Roman, R. J., Fenstermacher, J. D., Brown, S. L., Falck, J. R., Arbab, A. S., et al. (2006). 9L gliosarcoma cell proliferation and tumor growth in rats are suppressed by / N-hydroxy- / N-(4-butyl-2-methylphenol) formamidine (HET0016), a selective inhibitor of CYP4A. / Journal of Pharmacology and Experimental Therapeutics, 317, 97-08.
    112. Alexanian, A., Rufanova, V. A., Miller, B., Flasch, A., Roman, R. J., & Sorokin, A. (2009). Down-regulation of 20-HETE synthesis and signaling inhibits renal adenocarcinoma cell proliferation and tumor growth. / Anticancer Research, 29, 3819-824.
    113. Yu, W., Chen, L., Yang, Y. Q., Falck, J. R., Guo, A. M., Li, Y., et al. (2011). Cytochrome P450 ω-hydroxylase promotes angiogenesis and metastasis by upregulation of VEGF and MMP-9 in non-small cell lung cancer. / Cancer Chemotherapy and Pharmacology, 68, 619-29.
    114. Nithipatikom, K., Isbell, M. A., See, W. A., & Campbell, W. B. (2006). Elevated 12- and 20-hydroxyeicosatetraenoic acid in urine of patients with prostatic diseases. / Cancer Letters, 233, 219-25.
    115. Zhang, C., & Harder, D. R. (2002). Cerebral capillary endothelial cell mitogenesis and morphogenesis induced by astrocytic epoxyeicosatrienoic Acid. / Stroke, 33, 2957-964.
    116. Medhora, M., Daniels, J., Mundey, K., Fisslthaler, B., Busse, R., Jacobs, E. R., et al. (2003). Epoxygenase-driven angiogenesis in human lung microvascular endothelial cells. / American Journal of Physiology Heart and Circulatory Physiology, 284, H215-24.
    117. Ausprunk, D. H., & Folkman, J. (1977). Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. / Microvascular Research, 14, 53-1.
    118. Ribatti, D., Vacca, A., Roncali, L., & Dammacco, F. (2000). The chick embryo chorioallantoic membrane as a model for / in vivo research on antiangiogenesis. / Current Pharmacology Biotechnology, 1, 73-2.
    119. Michaelis, U. R., Fisslthaler, B., Medhora, M., Harder, D., Fleming, I., & Busse, R. (2003). Cytochrome P450 2C9-derived epoxyeicosatrienoic acids induce angiogenesis via cross-talk with the epidermal growth factor receptor (EGFR). / The FASEB Journal, 17, 770-72.
    120. Yan, G., Chen, S., You, B., & Sun, J. (2008). Activation of sphingosine kinase-1 mediates induction of endothelial cell proliferation and angiogenesis by epoxyeicosatrienoic acids. / Cardiovascular Research, 78, 308-14.
    121. Zhang, B., Cao, H., & Rao, G. N. (2006). Fibroblast growth factor-2 is a downstream mediator of phosphatidylinositol 3-kinase-Akt signaling in 14,15-epoxyeicosatrienoic acid-induced angiogenesis. / Journal of Biological Chemistry, 281, 905-14.
    122. Cheranov, S. Y., Karpurapu, M., Wang, D., Zhang, B., Venema, R. C., & Rao, G. N. (2008). An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. / Blood, 111, 5581-591.
    123. Yang, S., Lin, L., Chen, J. X., Lee, C. R., Seubert, J. M., Wang, Y., et al. (2007). Cytochrome P-450 epoxygenases protect endothelial cells from apoptosis induced by tumor necrosis factor-alpha via MAPK and PI3K/Akt signaling pathways. / American Journal of Physiology Heart and Circulatory Physiology, 293, H142-51.
    124. Tsuzuki, Y., Fukumura, D., Oosthuyse, B., Koike, C., Carmeliet, P., & Jain, R. K. (2000). Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha→hypoxia response element→VEGF cascade differentially regulates vascular response and growth rate in tumors. / Cancer Research, 60, 6248-252.
    125. Michaelis, U. R., Fisslthaler, B., Barbosa-Sicard, E., Falck, J. R., Fleming, I., & Busse, R. (2005). Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. / Journal of Cell Science, 118, 5489-498.
    126. Earley, S., Pastuszyn, A., & Walker, B. R. (2003). Cytochrome p-450 epoxygenase products contribute to attenuated vasoconstriction after chronic hypoxia. / American Journal of Physiology Heart and Circulatory Physiology, 285, H127-36.
    127. Suzuki, S., Oguro, A., Osada-Oka, M., Funae, Y., & Imaoka, S. (2008). Epoxyeicosatrienoic acids and/or their metabolites promote hypoxic response of cells. / Journal of Pharmacological Sciences, 108, 79-8.
    128. Webler, A. C., Michaelis, U. R., Popp, R., Barbosa-Sicard, E., Murugan, A., Falck, J. R., et al. (2008). Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. / American Journal of Physiology Cell Physiology, 295, C1292-301.
    129. Yang, S., Wei, S., Pozzi, A., & Capdevila, J. H. (2009). The arachidonic acid epoxygenase is a component of the signaling mechanisms responsible for VEGF-stimulated angiogenesis. / Archives of Biochemistry and Biophysics, 489, 82-1.
    130. Schmelzer, K. R., Kubala, L., Newman, J. W., Kim, I. H., Eiserich, J. P., & Hammock, B. D. (2005). Soluble epoxide hydrolase is a therapeutic target for acute inflammation. / Proceedings of the National Academy of Sciences of the United States of America, 102, 9772-777.
    131. Schmelzer, K. R., Inceoglu, B., Kubala, L., Kim, I. H., Jinks, S. L., Eiserich, J. P., et al. (2006). Enhancement of antinociception by coadministration of nonsteroidal anti-inflammatory drugs and soluble epoxide hydrolase inhibitors. / Proceedings of the National Academy of Sciences of the United States of America, 103, 13646-3651.
    132. Norwood, S., Liao, J., Hammock, B. D., & Yang, G. Y. (2010). Epoxyeicosatrienoic acids and soluble epoxide hydrolase: Potential therapeutic targets for inflammation and its induced carcinogenesis. / American Journal of Translation Research, 2, 447-57.
    133. Vainio, P., Gupta, S., Ketola, K., Mirtti, T., Mpindi, J. P., Kohonen, P., et al. (2011). Arachidonic acid pathway members PLA2G7, HPGD, EPHX2, and CYP4F8 identified as putative novel therapeutic targets in prostate cancer. / American Journal of Pathology, 178, 525-36.
    134. Harris, R. C., Homma, T., Jacobson, H. R., & Capdevila, J. (1990). Epoxyeicosatrienoic acids activate Na+/H+ exchange and are mitogenic in cultured rat glomerular mesangial cells. / Journal of Cellular Physiology, 144, 429-37.
    135. Sellmayer, A., Uedelhoven, W. M., Weber, P. C., & Bonventre, J. V. (1991). Endogenous non-cyclooxygenase metabolites of arachidonic acid modulate growth and mRNA levels of immediate-early response genes in rat mesangial cells. / Journal of Biological Chemistry, 266, 3800-807.
    136. Jiang, J. G., Chen, C. L., Card, J. W., Yang, S., Chen, J. X., Fu, X. N., et al. (2005). Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. / Cancer Research, 65, 4707-715.
    137. Chen, C., Wei, X., Rao, X., Wu, J., Yang, S., Chen, F., et al. (2011). Cytochrome P450 2J2 is highly expressed in hematologic malignant diseases and promotes tumor cell growth. / Journal of Pharmacology and Experimental Therapeutics, 336, 344-55.
    138. Cheng, L. M., Jiang, J. G., Sun, Z. Y., Chen, C., Dackor, R. T., Zeldin, D. C., et al. (2010). The epoxyeicosatrienoic acid-stimulated phosphorylation of EGF-R involves the activation of metalloproteinases and the release of HB-EGF in cancer cells. / Acta Pharmacologica Sinica, 31, 211-18.
    139. Chen, C., Li, G., Liao, W., Wu, J., Liu, L., Ma, D., et al. (2009). Selective inhibitors of CYP2J2 related to terfenadine exhibit strong activity against human cancers / in vitro and / in vivo. / Journal of Pharmacology and Experimental Therapeutics, 329, 908-18.
    140. Panigrahy, D., Kaipainen, A., Huang, S., Butterfield, C. E., Barnes, C. M., Fannon, M., et al. (2008). PPARalpha agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. / Proceedings of the National Academy of Sciences of the United States of America, 105, 985-90.
    141. Hammock, B. D., & Ota, K. (1983). Differential induction of cytosolic epoxide hydrolase, microsomal epoxide hydrolase, and glutathione S-transferase activities. / Toxicology and Applied Pharmacology, 71, 254-65.
    142. Tanaka, H., Kamita, S. G., Wolf, N. M., Harris, T. R., Wu, Z., Morisseau, C., et al. (2008). Transcriptional regulation of the human soluble epoxide hydrolase gene EPHX2. / Biochimica et Biophysica Acta, 1779, 17-7.
    143. Wray, J., & Bishop-Bailey, D. (2008). Epoxygenases and peroxisome proliferator-activated receptors in mammalian vascular biology. / Experimental Physiology, 93, 148-54.
    144. Ng, V. Y., Huang, Y., Reddy, L. M., Falck, J. R., Lin, E. T., & Kroetz, D. L. (2007). Cytochrome P450 eicosanoids are activators of peroxisome proliferator-activated receptor alpha. / Drug Metabolism and Disposition, 35, 1126-134.
    145. Wray, J. A., Sugden, M. C., Zeldin, D. C., Greenwood, G. K., Samsuddin, S., Miller-Degraff, L., et al. (2009). The epoxygenases CYP2J2 activates the nuclear receptor PPARalpha / in vitro and / in vivo. / PLoS One, 4, e7421.
    146. Kieran, M. W. (2010). DFCI Protocol 04343. In / 5 drug metronomic chemotherapy protocol for children with incurable tumors—Clinical trial ongoing.
    147. Zagorac, D., Jakovcevic, D., Gebremedhin, D., & Harder, D. R. (2008). Antiangiogenic effect of inhibitors of cytochrome P450 on rats with glioblastoma multiforme. / Journal of Cerebral Blood Flow and Metabolism, 28, 1431-439.
    148. Nithipatikom, K., Brody, D. M., Tang, A. T., Manthati, V. L., Falck, J. R., Williams, C. L., et al. (2010). Inhibition of carcinoma cell motility by epoxyeicosatrienoic acid (EET) antagonists. / Cancer Science, 101, 2629-636.
    149. Mitra, R., Guo, Z., Milani, M., Mesaros, C., Rodriguez, M., Nguyen, J., et al. (2011). CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (±)-14,15-epoxyeicosatrienoic acid (EET). / Journal of Biological Chemistry, 286, 17543-7559.
    150. Oguro, A., Sakamoto, K., Funae, Y., & Imaoka, S. (2011). Overexpression of CYP3A4, but not CYP2D6, promotes hypoxic response and cell growth of Hep3B cells. / Drug Metabolism Pharmacokinetics, 26, 407-15.
    151. Schmelzle, M., Dizdar, L., Matthaei, H., Baldus, S. E., Wolters, J., Lindenlauf, N., et al. (2011). Esophageal cancer proliferation is mediated by cytochrome P450 2C9 (CYP2C9). / Prostaglandins & Other Lipid Mediators, 94, 25-3.
    152. Guengerich, F. P., & Turvy, C. G. (1991). Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemical analysis of surgical liver samples. / Journal of Pharmacology and Experimental Therapeutics, 256, 1189-194.
    153. Enayetallah, A. E., French, R. A., & Grant, D. F. (2006). Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms. / Journal of Molecular Histology, 37, 133-41.
    154. Leclerc, J., Tournel, G., Courcot-Ngoubo Ngangue, E., Pottier, N., Lafitte, J. J., Jaillard, S., et al. (2010). Profiling gene expression of whole cytochrome P450 superfamily in human bronchial and peripheral lung tissues: Differential expression in non-small cell lung cancers. / Biochimie, 92, 292-06.
    155. Murray, G. I., Patimalla, S., Stewart, K. N., Miller, I. D., & Heys, S. D. (2010). Profiling the expression of cytochrome P450 in breast cancer. / Histopathology, 57, 202-11.
    156. Goodman, A. I., Choudhury, M., da Silva, J. L., Schwartzman, M. L., & Abraham, N. G. (1997). Overexpression of the heme oxygenase gene in renal cell carcinoma. / Proceedings of the Society for Experimental Biology and Medicine, 214, 54-1.
    157. Yang, M. D., Wu, C. C., Chiou, S. H., Chiu, C. F., Lin, T. Y., Chiang, I. P., et al. (2003). Reduction of dihydrodiol dehydrogenase expression in resected hepatocellular carcinoma. / Oncology Reports, 10, 271-76.
    158. Roques, M., Bagrel, D., Magdalou, J., & Siest, G. (1991). Expression of arylhydrocarbon hydroxylase, epoxide hydrolases, glutathione S-transferase and UDP-glucuronosyltransferases in H5-6 hepatoma cells. / General Pharmacology, 22, 677-84.
    159. Thomassen, M., Tan, Q., & Kruse, T. A. (2009). Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis. / Breast Cancer Research and Treatment, 113, 239-49.
    160. Rahman, A., Korzekwa, K. R., Grogan, J., Gonzalez, F. J., & Harris, J. W. (1994). Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8. / Cancer Research, 54, 5543-546.
    161. Dai, D., Zeldin, D. C., Blaisdell, J. A., Chanas, B., Coulter, S. J., Ghanayem, B. I., et al. (2001). Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. / Pharmacogenetics, 11, 597-07.
    162. Jernstrom, H., Bageman, E., Rose, C., Jonsson, P. E., & Ingvar, C. (2009). CYP2C8 and CYP2C9 polymorphisms in relation to tumour characteristics and early breast cancer related events among 652 breast cancer patients. / British Journal of Cancer, 101, 1817-823.
    163. Isomura, Y., Yamaji, Y., Ohta, M., Seto, M., Asaoka, Y., Tanaka, Y., et al. (2010). A genetic polymorphism of CYP2C19 is associated with susceptibility to biliary tract cancer. / Journal of Gastroenterology, 45, 1045-052.
    164. Fornage, M., Boerwinkle, E., Doris, P. A., Jacobs, D., Liu, K., & Wong, N. D. (2004). Polymorphism of the soluble epoxide hydrolase is associated with coronary artery calcification in African-American subjects: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. / Circulation, 109, 335-39.
    165. Lee, C. R., North, K. E., Bray, M. S., Fornage, M., Seubert, J. M., Newman, J. W., et al. (2006). Genetic variation in soluble epoxide hydrolase (EPHX2) and risk of coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) Study. / Human Molecular Genetics, 15, 1640-649.
    166. Breyer, R. M., Bagdassarian, C. K., Myers, S. A., & Breyer, M. D. (2001). Prostanoid receptors: Subtypes and signaling. / Annual Review of Pharmacology and Toxicology, 41, 661-90.
  • 作者单位:Dipak Panigrahy (1)
    Emily R. Greene (1)
    Ambra Pozzi (2)
    Dao Wen Wang (3)
    Darryl C. Zeldin (4)

    1. Vascular Biology Program, Boston Children’s Hospital, Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
    2. Department of Medicine and Cancer Biology, Division of Nephrology and Hypertension, Vanderbilt University, Nashville, TN, USA
    3. Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
    4. Division of Intramural Research, National Institute of Environmental Health Science, National Institute of Health, Research Triangle Park, NC, USA
  • ISSN:1573-7233
文摘
Inflammation and angiogenesis in the tumor microenvironment are increasingly implicated in tumorigenesis. Endogenously produced lipid autacoids, locally acting small-molecule mediators, play a central role in inflammation and tissue homeostasis. These lipid mediators, collectively referred to as eicosanoids, have recently been implicated in cancer. Although eicosanoids, including prostaglandins and leukotrienes, are best known as products of arachidonic acid metabolism by cyclooxygenases and lipoxygenases, arachidonic acid is also a substrate for another enzymatic pathway, the cytochrome P450 (CYP) system. This eicosanoid pathway consists of two main branches: ω-hydroxylases which converts arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases which converts it to four regioisomeric epoxyeicosatrienoic acids (EETs; 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET). EETs regulate inflammation and vascular tone. The bioactive EETs are produced predominantly in the endothelium and are mainly metabolized by soluble epoxide hydrolase to less active dihydroxyeicosatrienoic acids. EET signaling was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology. To date, most research on eicosanoids in cancer has focused on the COX and LOX pathways. In contrast, the role of cytochrome P450-derived eicosanoids, such as EETs and HETEs, in cancer has received little attention. While CYP epoxygenases are expressed in human cancers and promote human cancer metastasis, the role of EETs (the direct products of CYP epoxygenases) in cancer remains poorly characterized. In this review, the emerging role of EET signaling in angiogenesis, inflammation, and cancer is discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700