用户名: 密码: 验证码:
A Local Approximation of Fundamental Measure Theory Incorporated into Three Dimensional Poisson–Nernst–Planck Equations to Account for Hard Sphere Repulsion Among Ions
详细信息    查看全文
  • 作者:Yu Qiao ; Xuejiao Liu ; Minxin Chen ; Benzhuo Lu
  • 关键词:Hard sphere repulsion ; Three dimensional fundamental measure theory ; Poisson–Nernst–Planck equations ; Size ; modified PNP ; Equation of state
  • 刊名:Journal of Statistical Physics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:163
  • 期:1
  • 页码:156-174
  • 全文大小:855 KB
  • 参考文献:1.Abaid, N., Eisenberg, R.S., Liu, W.: Asymptotic expansions of I–V relations via a Poisson–Nernst–Planck system. SIAM. J. Appl. Dyn. Syst. 7, 1507–1526 (2008)ADS MathSciNet CrossRef MATH
    2.Bazant, M.Z., Kilic, M.S., Storey, B.D., Ajdari, A.: Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv. Colloid Interface Sci. 152, 48–88 (2009)CrossRef
    3.Boda, D., Nonner, W., Valisk, M., Henderson, D., Eisenberg, B., Gillespie, D.: Steric selectivity in Na channels arising from protein polarization and mobile side chains. Biophys. J. 93, 1960–1980 (2007)ADS CrossRef
    4.Boda, D., Nonner, W., Henderson, D., Eisenberg, B., Gillespie, D.: Volume exclusion in calcium selective channels. Biophys. J. 94, 3486–3496 (2008)ADS CrossRef
    5.Boda, D., Valisk, M., Henderson, D., Eisenberg, B., Gillespie, D., Nonner, W.: Ionic selectivity in L-type calcium channels by electrostatics and hard-core repulsion. J. Gen. Physiol. 133, 497–509 (2009)CrossRef
    6.Borukhov, I., Andelman, D., Orland, H.: Steric effects in electrolyte: a modified Poisson–Boltzmann equation. Phys. Rev. Lett. 79, 435–438 (1997)ADS CrossRef
    7.Borukhov, I., Andelman, D., Orland, H.: Adsorption of large ions from an electrolyte solution: a modified Poisson–Boltzmann equation. Electrochim. Acta 46, 221–229 (2000)CrossRef
    8.Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system I: interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)ADS CrossRef
    9.Chen, D., Lear, J., Eisenberg, B.: Permeation through an open channel: Poisson–Nernst–Planck theory of a synthetic ionic channel. Biophys. J. 72, 97–116 (1997)ADS CrossRef
    10.Chen, M., Lu, B.: Tmsmesh: a robust method for molecular surface mesh generation using a trace technique. J. Chem. Theory Comput. 7, 203–212 (2011)CrossRef
    11.Chen, M., Tu, B., Lu, B.: Triangulated manifold meshing method preserving molecular surface topology. J. Mol. Graph. Model. 38, 411–418 (2012)CrossRef
    12.Chu, V.B., Bai, Y., Lipfert, J., Herschlag, D., Doniach, S.: Evaluation of ion binding to DNA duplexes using a size-modified Poisson–Boltzmann theory. Biophys. J. 93, 3202–3209 (2007)ADS CrossRef
    13.Eisenberg, B.: Crowded charges in ion channels. In: Advances in Chemical Physics, pp. 77–223, Wiley, New York (2011)
    14.Evans, R.: Density functional theory for inhomogeneous fluids I: Simple fluids in equilibrium. Lectures at 3rd Warsaw School of Statistical Physics, Kazimierz Dolny 27 (2009)
    15.Frink, L.J.D., Salinger, A.G.: Two- and three-dimensional nonlocal density functional theory for inhomogeneous fluids: I. Algorithms and parallelization. J. Comput. Phys. 159, 407–424 (2000)ADS CrossRef MATH
    16.Frink, L.J.D., Salinger, A.G., Sears, M.P., Weinhold, J.D., Frischknecht, A.L.: Numerical challenges in the application of density functional theory to biology and nanotechnology. J. Phys. 14, 12167–12187 (2002)
    17.Frydel, D., Levin, Y.: A close look into the excluded volume effects within a double layer. J. Chem. Phys. 137, 164703 (2012)ADS CrossRef
    18.Gillespie, D.: A review of steric interactions of ions: why some theories succeed and others fail to account for ion size. Microfluid. Nanofluid. 18, 717–738 (2014)CrossRef
    19.Gillespie, D., Nonner, W., Eisenberg, R.S.: Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux. J. Phys. 14, 12129–12145 (2002)
    20.Gillespie, D., Nonner, W., Eisenberg, R.S.: Density functional theory of charged, hard-sphere fluids. Phys. Rev. E 68, 031503 (2003)ADS CrossRef
    21.Hansen, J., McDonald, I.: Theory of Simple Liquids, 3rd edn. Academic Press, Cambridge (2006)MATH
    22.Hansen-Goos, H., Mecke, K.: Fundamental measure theory for inhomogeneous fluids of nonspherical hard particles. Phys. Rev. Lett. 102, 018302 (2009)ADS CrossRef
    23.Harris, R.C., Bredenberg, J.H., Silalahi, A.R.J., Boschitsch, A.H., Fenley, M.O.: Understanding the physical basis of the salt dependence of the electrostatic binding free energy of mutated charged ligand-nucleic acid complexes. Biophys. Chem. 156, 79–87 (2011)CrossRef
    24.Harris, R.C., Boschitsch, A.H., Fenley, M.O.: Sensitivities to parameterization in the size-modified Poisson–Boltzmann equation. J. Chem. Phys. 140, 075102 (2014)ADS CrossRef
    25.Horng, T.L., Lin, T.C., Liu, C., Eisenberg, B.: PNP equations with steric effects: a model of ion flow through channels. J. Phys. Chem. B 116, 11422–11441 (2012)CrossRef
    26.Hyon, Y., Eisenberg, B., Liu, C.: A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9, 459–475 (2011)MathSciNet CrossRef MATH
    27.Im, W., Roux, B.: Ion permeation and selectivity of ompf porin: a theoretical study based on molecular dynamics, brownian dynamics, and continuum electrodiffusion theory. J. Mol. Biol. 322(4), 851–869 (2002)CrossRef
    28.Ji, S., Liu, W.: Poisson–Nernst–Planck systems for ion flow with density functional theory for hard-sphere potential: I–V relations and critical potentials. Part I: analysis. J. Dyn. Differ. Equ. 24, 955–983 (2012)MathSciNet CrossRef MATH
    29.Jiang, J., Cao, D., De Jiang, WuJ: Time-dependent density functional theory for ion diffusion in electrochemical systems. J. Phys. 26, 284102 (2014)
    30.Jimenez-Morales, D., Liang, J., Eisenberg, B.: Ionizable side chains at catalytic active sites of enzymes. Eur. Biophys. J. 41, 449–460 (2012)CrossRef
    31.Kamalvand, M., Keshavarzi, T.E., Mansoori, G.A.: Behavior of the confined hard-sphere fluid within nanoslits: a fundamental-measure density-functional theory study. Int. J. Nanosci. 07, 245–253 (2008)CrossRef
    32.Kierlik, E., Rosinberg, M.L.: Free-energy density functional for the inhomogeneous hard-sphere fluid: application to interfacial adsorption. Phys. Rev. A 42, 3382–3387 (1990)ADS CrossRef
    33.Kilic, M.S., Bazant, M.Z., Ajdari, A.: Steric effects in the dynamics of electrolytes at large applied voltages I: double-layer charging. Phys. Rev. E 75, 021502 (2007)ADS CrossRef
    34.Knepley, M.G., Karpeev, D.A., Davidovits, S., Eisenberg, R.S., Gillespie, D.: An efficient algorithm for classical density functional theory in three dimensions: ionic solutions. J. Chem. Phys. 132, 124101 (2010)ADS CrossRef
    35.Kurnikova, M.G., Coalson, R.D., Graf, P., Nitzan, A.: A lattice relaxation algorithm for three-dimensional Poisson–Nernst–Planck theory with application to ion transport through the gramicidin A channel. Biophys. J. 76, 642–656 (1999)CrossRef
    36.Levesque, M., Vuilleumier, R., Borgis, D.: Scalar fundamental measure theory for hard spheres in three dimensions: application to hydrophobic solvation. J. Chem. Phys. 137, 034115 (2012)ADS CrossRef
    37.Li, B., Liu, P., Xu, Z., Zhou, S.: Ionic size effects: generalized Boltzmann distributions, counterion stratification and modified Debye length. Nonlinearity 26, 2899–2922 (2013)ADS MathSciNet CrossRef MATH
    38.Lin, G., Liu, W., Yi, Y., Zhang, M.: Poisson–Nernst–Planck systems for ion flow with a local hard-sphere potential for ion size effects. SIAM J. Appl. Dyn. Syst. 12, 1613–1648 (2013)MathSciNet CrossRef MATH
    39.Liu, J.L.: Numerical methods for the Poisson–Fermi equation in electrolytes. J. Comput. Phys. 247, 88–99 (2013)ADS MathSciNet CrossRef
    40.Liu, J.L., Eisenberg, B.: Correlated ions in a calcium channel model: a Poisson–Fermi theory. J. Phys. Chem. B 117, 12051–12058 (2013)CrossRef
    41.Liu, J.L., Eisenberg, B.: Poisson–Nernst–Planck-Fermi theory for modeling biological ion channels. J. Chem. Phys. 141, 22D532 (2014)CrossRef
    42.Liu, W., Tu, X., Zhang, M.: Poisson–Nernst–Planck systems for ion flow with density functional theory for hard-sphere potential: I–V relations and critical potentials. Part II: numerics. J. Dyn. Differ. Equ. 24, 985–1004 (2012)MathSciNet CrossRef MATH
    43.Lu, B., Zhou, Y.: Poisson–Nernst–Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates. Biophys. J. 100, 2475–2485 (2011)ADS CrossRef
    44.Lu, B., Zhou, Y., Huber, G.A., Bond, S.D., Holst, M.J., McCammon, J.A.: Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution. J. Chem. Phys. 127, 135102 (2007)ADS CrossRef
    45.Lu, B., Zhou, Y., Holst, M.J., McCammon, J.A.: Recent progress in numerical methods for the Poisson–Boltzmann equation in biophysical applications. Commun. Comput. Phys. 3, 973–1009 (2008)MATH
    46.Meng, D., Zheng, B., Lin, G., Sushko, M.L.: Numerical solution of 3D Poisson–Nernst–Planck equations coupled with classical density functional theory for modeling ion and electron transport in a confined environment. Commun. Comput. Phys. 16, 1298–1322 (2014)MathSciNet
    47.Nauman, E., He, D.Q.: Nonlinear diffusion and phase separation. Chem. Eng. Sci. 56, 1999–2018 (2001)CrossRef
    48.Phan, S., Kierlik, E., Rosinberg, M.L., Bildstein, B., Kahl, G.: Equivalence of two free-energy models for the inhomogeneous hard-sphere fluid. Phys. Rev. E 48, 618–620 (1993)ADS CrossRef
    49.Pods, J., Schönke, J., Bastian, P.: Electrodiffusion models of neurons and extracellular space using the Poisson–Nernst–Planck equations-numerical simulation of the intra- and extracellular potential for an axon model. Biophys. J. 105, 242–254 (2013)ADS CrossRef
    50.Qiao, Y., Tu, B., Lu, B.: Ionic size effects to molecular solvation energy and to ion current across a channel resulted from the nonuniform size-modified PNP equations. J. Chem. Phys. 140, 174102 (2014)ADS CrossRef
    51.Rosenfeld, Y.: Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 63, 980–983 (1989)ADS CrossRef
    52.Rosenfeld, Y.: Free-energy model for the inhomogeneous hard-sphere fluid in D dimensions: structure factors for the hard-disk (D = 2) mixtures in simple explicit form. Phys. Rev. A 42, 5978–5989 (1990)ADS CrossRef
    53.Rosenfeld, Y.: Free energy model for inhomogeneous fluid mixtures: Yukawa-charged hard spheres, general interactions, and plasmas. J. Chem. Phys. 98, 8126–8148 (1993)ADS CrossRef
    54.Rosenfeld, Y.: Density functional theory of molecular fluids: free-energy model for the inhomogeneous hard-body fluid. Phys. Rev. E 50, R3318–R3321 (1994)ADS CrossRef
    55.Rosenfeld, Y.: Free energy model for the inhomogeneous hard-body fluid: application of the Gauss–Bonnet theorem. Mol. Phys. 86, 637–647 (1995)ADS CrossRef
    56.Rosenfeld, Y., Levesque, D., Weis, J.J.: Free-energy model for the inhomogeneous hard-sphere fluid mixture: triplet and higher-order direct correlation functions in dense fluids. J. Chem. Phys. 92, 6818–6832 (1990)ADS CrossRef
    57.Rosenfeld, Y., Schmidt, M., Löwen, H., Tarazona, P.: Dimensional crossover and the freezing transition in density functional theory. J. Phys. 8, L577–L581 (1996)
    58.Rosenfeld, Y., Schmidt, M., Löwen, H., Tarazona, P.: Fundamental-measure free-energy density functional for hard spheres: dimensional crossover and freezing. Phys. Rev. E 55, 4245–4263 (1997)ADS CrossRef
    59.Roth, R.: Fundamental measure theory for hard-sphere mixtures: a review. J. Phys. 22, 063102 (2010)
    60.Roth, R., Evans, R., Lang, A., Kahl, G.: Fundamental measure theory for hard-sphere mixtures revisited: the White Bear version. J. Phys. 14, 12063–12078 (2002)
    61.Santangelo, C.D.: Computing counterion densities at intermediate coupling. Phys. Rev. E 73, 041512 (2006)ADS CrossRef
    62.Sears, M.P., Frink, L.J.D.: A new efficient method for density functional theory calculations of inhomogeneous fluids. J. Comput. Phys. 190, 184–200 (2003)ADS CrossRef MATH
    63.Si, H.: TetGen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41, 11:1–11:36 (2015)MathSciNet CrossRef
    64.Silalahi, A.R.J., Boschitsch, A.H., Harris, R.C., Fenley, M.O.: Comparing the predictions of the nonlinear Poisson–Boltzmann equation and the ion size-modified Poisson–Boltzmann equation for a low-dielectric charged spherical cavity in an aqueous salt solution. J. Chem. Theory Comput. 6, 3631–3639 (2010)CrossRef
    65.Tarazona, P.: Density functional for hard sphere crystals: a fundamental measure approach. Phys. Rev. Lett. 84, 694–697 (2000)ADS CrossRef
    66.Tarazona, P., Rosenfeld, Y.: From zero-dimension cavities to free-energy functionals for hard disks and hard spheres. Phys. Rev. E 55, R4873–R4876 (1997)ADS CrossRef
    67.Tarazona, P., Rosenfeld, Y.: Free energy density functional from 0d cavities. New Approaches to Problems in Liquid State Theory, vol. 529, pp. 293–302. Springer, Netherlands (1999)CrossRef
    68.Tu, B., Chen, M., Xie, Y., Zhang, L., Eisenberg, B., Lu, B.: A parallel finite element simulator for ion transport through three-dimensional ion channel systems. J. Comput. Chem. 34, 2065–2078 (2013)CrossRef
    69.Xie, Y., Cheng, J., Lu, B., Zhang, L.: Parallel adaptive finite element algorithms for solving the coupled electro-diffusion equations. Mol. Based Math. Biol. 1, 90–108 (2013)CrossRef MATH
    70.Yu, Y., Wu, J.: Structures of hard-sphere fluids from a modified fundamental-measure theory. J. Chem. Phys. 117, 10156–10164 (2002)ADS CrossRef
    71.Zhang, L.: A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection. Numer. Math. Theory Methods Appl. 2, 65–89 (2009)MathSciNet MATH
  • 作者单位:Yu Qiao (1)
    Xuejiao Liu (1)
    Minxin Chen (2)
    Benzhuo Lu (1)

    1. State Key Laboratory of Scientific and Engineering Computing, National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
    2. Department of Mathematics, Center for System Biology, Soochow University, Suzhou, 215006, China
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Statistical Physics
    Mathematical and Computational Physics
    Physical Chemistry
    Quantum Physics
  • 出版者:Springer Netherlands
  • ISSN:1572-9613
文摘
The hard sphere repulsion among ions can be considered in the Poisson–Nernst–Planck (PNP) equations by combining the fundamental measure theory (FMT). To reduce the nonlocal computational complexity in 3D simulation of biological systems, a local approximation of FMT is derived, which forms a local hard sphere PNP (LHSPNP) model. In the derivation, the excess chemical potential from hard sphere repulsion is obtained with the FMT and has six integration components. For the integrands and weighted densities in each component, Taylor expansions are performed and the lowest order approximations are taken, which result in the final local hard sphere (LHS) excess chemical potential with four components. By plugging the LHS excess chemical potential into the ionic flux expression in the Nernst–Planck equation, the three dimensional LHSPNP is obtained. It is interestingly found that the essential part of free energy term of the previous size modified model (Borukhov et al. in Phys Rev Lett 79:435–438, 1997; Kilic et al. in Phys Rev E 75:021502, 2007; Lu and Zhou in Biophys J 100:2475–2485, 2011; Liu and Eisenberg in J Chem Phys 141:22D532, 2014) has a very similar form to one term of the LHS model, but LHSPNP has more additional terms accounting for size effects. Equation of state for one component homogeneous fluid is studied for the local hard sphere approximation of FMT and is proved to be exact for the first two virial coefficients, while the previous size modified model only presents the first virial coefficient accurately. To investigate the effects of LHS model and the competitions among different counterion species, numerical experiments are performed for the traditional PNP model, the LHSPNP model, the previous size modified PNP (SMPNP) model and the Monte Carlo simulation. It’s observed that in steady state the LHSPNP results are quite different from the PNP results, but are close to the SMPNP results under a wide range of boundary conditions. Besides, in both LHSPNP and SMPNP models the stratification of one counterion species can be observed under certain bulk concentrations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700