用户名: 密码: 验证码:
Growth rate and composition of directionally solidified intermetallic TiAl–Nb alloys with different solidification conditions
详细信息    查看全文
  • 作者:Li-Wei Zhang ; Jun-Pin Lin ; Xiang-Jun Xu ; Jian-Ping He ; Xian-Fei Ding
  • 关键词:TiAl–Nb alloys ; Intermetallic ; Directional solidification ; Microstructural parameters ; Solute concentration
  • 刊名:Rare Metals
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:35
  • 期:1
  • 页码:54-64
  • 全文大小:4,309 KB
  • 参考文献:[1]Rosa DM, Spinelli JE, Ferreira IL, Garcia A. Cellular growth during transient directional solidification of Pb–Sb alloys. J Alloy Compd. 2006;422(1–2):227.CrossRef
    [2]Liu Y, Hu R, Kou HC, Wang J, Zhang TB, Li JS, Zhang J. Solidification characteristics of high Nb-containing γ-TiAl-based alloys with different aluminum contents. Rare Met. 2015;34(6):386.CrossRef
    [3]Kaya H, Cadirli E, Gunduz M. Directional cellular growth of Al-2 wt% Li bulk samples. Appl Phys A: Mater Sci Process. 2009;94(1):155.CrossRef
    [4]Mullins WW, Sekerka R. Stability of a planar interface during solidification of a dilute binary alloy. J Appl Phys. 1964;35(2):444.CrossRef
    [5]Lin YZ, Fu GS. Cao Rui, Chen JH, Hu DW. Compression damage and fracture behaviors of γ-TiAl-based alloys. Chin J Rare Met. 2014;38(2):334.
    [6]Glicksman M, Koss M, Winsa E. Dendritic growth velocities in microgravity. Phys Rev Lett. 1994;73(4):573.CrossRef
    [7]Grugel RN, Fedoseyev A, Kim S. Minimizing segregation during the controlled directional solidification of dendritic alloys. Metall Trans A: Phys Metall Mater Sci. 2002;33(12):3876.CrossRef
    [8]Rosa DM, Spinelli JE, Ferreira IL, Garcia A. Cellular growth during transient directional solidification of Pb–Sb alloys. J Alloy Compd. 2006;422(1):227.CrossRef
    [9]Kaya H, Çadırlı E, Böyük U, Maraşlı N. Investigation of directional solidified Al–Ti alloy. J Non-Cryst Solids. 2009;355(22):1231.CrossRef
    [10]Wang ZJ, Su GQ, Jia WP, Yang QX. Microstructure and performance of AZ80D magnesium alloy by purification of chloride flux containing Er. Rare Met. 2014;33(5):541.CrossRef
    [11]Feng J, Huang W, Lin X, Pan Q, Li T, Zhou Y. Primary cellular/dendritic spacing selection of Al–Zn alloy during unidirectional solidification. J Cryst Growth. 1999;197(1):393.CrossRef
    [12]Walker D, Mullis A. A mechanism for the equalisation of primary spacing during cellular and dendritic growth. J Mater Sci. 2001;36(4):865.CrossRef
    [13]Pan Q, Huang W, Lin X, Zhou Y. Primary spacing selection of Cu Mn alloy under laser rapid solidification condition. J Cryst Growth. 1997;181(1):109.CrossRef
    [14]Makkonen L. Spacing in solidification of dendritic arrays. J Cryst Growth. 2000;208(1):772.CrossRef
    [15]Böyük U, Maraşlı N, Kaya H, Çadırlı E, Keşlioğlu K. Directional solidification of Al–Cu–Ag alloy. Appl Phys A. 2009;95(3):923.CrossRef
    [16]Gündüz M. Directional solidification of aluminium copper alloys. Mater Sci Eng, A. 2002;327(2):167.CrossRef
    [17]Fan JL, Li XZ, Su YQ, Chen RR, Guo JJ, Fu HZ. Directional solidification of Ti-49 at.%Al alloy. Appl Phys A: Mater Sci Process. 2011;105(1):239.CrossRef
    [18]Li XZ, Fan JL, Su YQ, Liu D, Guo JJ, Fu HZ. Lamellar orientation and growth direction of α phase in directionally solidified Ti–46Al–0.5W–0.5Si alloy. Intermetallics. 2012;27:38.CrossRef
    [19]Langer J, Mller-Krumbhaar H. Theory of dendritic growth I. Elements of a stability analysis. Acta Metall. 1978;26(11):1681.CrossRef
    [20]Langer J, Müller-Krumbhaar H. Theory of dendritic growth II. Instabilities in the limit of vanishing surface tension. Acta Metall. 1978;26(11):1689.CrossRef
    [21]Trivedi R, Somboonsuk K. Constrained dendritic growth and spacing. Mater Sci Eng. 1984;65(1):65.CrossRef
    [22]Kurz W, Fisher D. Dendrite growth at the limit of stability: tip radius and spacing. Acta Metall. 1981;29(1):11.CrossRef
    [23]Trivedi R. Interdendritic spacing. II. A comparison of theory and experiment. Metall Trans A: Phys Metall Mater Sci. 1984;15A(6):977.CrossRef
    [24]Hunt J, Lu S-Z. Numerical modeling of cellular/dendritic array growth: spacing and structure predictions. Metall Trans A. 1996;27(3):611.CrossRef
    [25]Bouchard D, Kirkaldy JS. Prediction of dendrite arm spacings in unsteady-and steady-state heat flow of unidirectionally solidified binary alloys. Metall Trans B. 1997;28(4):651.CrossRef
    [26]Hunt J. Solidification and Casting of Metals. London: The Metal Society; 1979. 3.
    [27]Kaya H, Cadirli E, Keslioglu K, Marasli N. Dependency of the dendritic arm spacings and tip radius on the growth rate and composition in the directionally solidified succinonitrile-carbon tetrabromide alloys. J Cryst Growth. 2005;276(3–4):583.CrossRef
    [28]Bouchard D, Kirkaldy J. Scaling of intragranuiar dendritic microstructure in ingot solidification. Metall Trans B. 1996;27(1):101.CrossRef
    [29]Lapin J, Gabalcová Z. Solidification behaviour of TiAl-based alloys studied by directional solidification technique. Intermetallics. 2011;19(6):797.CrossRef
    [30]Okamoto T, Kishitake K. Dendritic structure in unidirectionally solidified aluminum, tin, and zinc base binary alloys. J Cryst Growth. 1975;29(2):137.CrossRef
    [31]Spittle J. The effects of composition and cooling rate on the as-cast microstructures of Zn–Ti alloys. Metallography. 1972;5(5):423.CrossRef
    [32]Johnson D, Inui H, Yamaguchi M. Crystal growth of TiAl alloys. Intermetallics. 1998;6(7):647.CrossRef
    [33]Liu Y, Yang G, Zhou Y. High-velocity banding structure in the laser-resolidified hypoperitectic Ti47Al53 alloy. J Cryst Growth. 2002;240(3):603.CrossRef
  • 作者单位:Li-Wei Zhang (2)
    Jun-Pin Lin (2)
    Xiang-Jun Xu (3)
    Jian-Ping He (2)
    Xian-Fei Ding (1)
    Xiao-Ou Jin (4)

    2. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, 100083, China
    3. Materials and Chemistry School, Zhongyuan University of Technology, Zhengzhou, 450007, China
    1. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing, 100083, China
    4. School of Architecture and Engineering, Heilongjiang University, Harbin, 150080, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Metallic Materials
    Chinese Library of Science
  • 出版者:Journal Publishing Center of University of Science and Technology Beijing, in co-publication with Sp
  • ISSN:1867-7185
文摘
Intermetallic Ti–xAl–8Nb (x = 41, 43, 45, 47, 49; at%) alloys were solidified unidirectionally upwards with a constant temperature gradient of G = 3.8 K·mm−1 at wide range of growth rates of v = 10–400 μm·s−1 using a Bridgman directional solidification (DS) furnace. Microstructural parameters including the primary dendrite arm spacing (λ 1), secondary dendrite arm spacing (λ 2), dendrite tip radius (R) and mushy zone depth (d) were measured statistically. The values of λ 1, λ 2, R and d decrease as the growth rate increases for a given composition (x). The values of λ 1, λ 2, R and v increase with the increase in x value, while the value of d firstly increases and then decreases with the increase in x value for a given v. The relationships between λ 1, λ 2 and R were analyzed by the linear regression. The average growth rate exponent of λ 1 is 0.29, which is in accordance with the previous experimental observations, and that of λ 2 is close to the previous experimental results, while those of R and d are lower than the results in other alloy systems. In addition, theoretical models for λ 1, λ 2 and R were compared with the experimental observations, and a comparison of the present experimental results with the theoretical models and previous experimental results was also made.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700