用户名: 密码: 验证码:
Microstructure Evolution and Hardness of an Ultra-High Strength Cu-Ni-Si Alloy During Thermo-mechanical Processing
详细信息    查看全文
  • 作者:Q. Lei ; Z. Li ; W. P. Hu ; Y. Liu ; C. L. Meng…
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2016
  • 出版时间:July 2016
  • 年:2016
  • 卷:25
  • 期:7
  • 页码:2615-2625
  • 全文大小:21,443 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
  • 卷排序:25
文摘
Microstructure evolution and hardness changes of an ultra-high strength Cu-Ni-Si alloy during thermo-mechanical processing have been investigated. For hot-compressive deformation specimens, dynamic recrystallization preferentially appeared on deformation bands. As deformation temperature increased from 750 to 900 °C, elongated grains with the Cubic texture {001} 〈100〉 were substituted by recrystallized grains with Copper texture {112} 〈111〉. For the samples having undergone cold rolling followed by annealing, static recrystallization preferentially occurred in the deformation bands, and then complete recrystallization occurred. Goss, Cubic, and Brass textures remained after annealing at 600 and 700 °C for 1 h; R texture {111} 〈211〉 and recrystallization texture {001} 〈100〉 were formed in samples annealed at 800 and 900 °C for 1 h, respectively. For samples processed under multi-directional forging at cryogenic temperature, the hardness was increased as a result of work hardening and grain refinement strengthening. These were attributed to the formation of equiaxed sub-grain structures and a high dislocation density.KeywordsCu-Ni-Siforginghardnessheat treatmentthermo-mechanical processing

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700