用户名: 密码: 验证码:
Yields of Hydrogen and Hydrogen Peroxide from Argon–Water Vapor in Dielectric Barrier Discharge
详细信息    查看全文
  • 作者:G. R. Dey ; Tomi Nath Das
  • 关键词:Dielectric barrier discharge ; Argon ; Water vapor ; Hydrogen ; Hydrogen peroxide ; Free radical reactions ; Gas chromatograph
  • 刊名:Plasma Chemistry and Plasma Processing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:36
  • 期:2
  • 页码:523-534
  • 全文大小:764 KB
  • 参考文献:1.Das TN, Dey GR (2013) J Hazard Mater 248–249:469–477CrossRef
    2.Dey GR, Sharma A, Pushpa KK, Das TN (2010) J Hazard Mater 178:693–698CrossRef
    3.Dey GR, Das TN (2013) IEEE Trans Plasma Sci 41:140–146CrossRef
    4.Guo Y, Liao X, Ye D (2008) J Environ Sci 20:1429–1432CrossRef
    5.Deynse V, De Geyter N, Leys C, Morent R (2014) Plasma Process Polym 11:117–125CrossRef
    6.Kawakami H, Zukeran A, Yasumoto K, Ehara Y, Yamamoto T (2013) IEEJ Trans Fund Mater 133:642–647CrossRef
    7.Lukes P, Locke BR (2005) J Phys D Appl Phys 38:4074–4081CrossRef
    8.Shih K-Y, Locke BR (2011) IEEE Trans Plasma Sci 39:883–892CrossRef
    9.Wang H, Li J, Quan X, Wu Y, Li G, Wang F (2007) J Hazard Mat 141:336–343CrossRef
    10.Lukes P, Appleton AT, Locke BR (2002) Published in industry applications conference, 37th IAS annual meeting, vol 3, pp 1816–1821
    11.Ono R, Oda T (2003) J Appl Phys 93:5876–5882CrossRef
    12.Burlica R, Finney WC, Locke BR (2013) IEEE Trans Ind Appl 49:1098–1103CrossRef
    13.Anpilov AM, Barkhudrarov EM, Bark YB, Zadiraka YV, Christof M, Koztov YN, Kossyi IA, Kopev VA, Silakov VP, Taktakish MI, Temchin SM (2001) J Appl Phys 34:993–999
    14.Dodet B, Odic E, Goldman A, Goldman M, Renard D (2005) J Adv Oxid Technol 8:91–97
    15.Kirkpatrick MJ, Dodet B, Odic E (2007) Int J Plasma Environ Sci Technol 1:96–101
    16.Velikonja J, Bergougnou MA, Peter Castle GS, Caims WL, Inculet I (2001) Ozone Sci Eng J Int Ozone Assoc 23:467–478
    17.Falkenstein Z (1999) Ozone Sci Eng J Int Ozone Assoc 21:583–603
    18.Kozlov KV, Odic E, Tatarenko PA, Dodet B, Fedoseev GS, Kirkpatrick MJ, Samoilovich VG, Ganciu M (2006) Published in “10th International Symposium on High Pres. Low Temp. Plasma, SAGA: Japan (2006)” hal-00221303, version 1–28 Jan 2008. http://​citeseerx.​ist.​psu.​edu/​viewdoc/​download?​doi=​10.​1.​1.​372.​1877&​rep=​rep1&​type=​pdf . Accessed 25 March 2015
    19.Buckley PT, Birks JW (1995) Atmos Environ 29:2409–2415CrossRef
    20.Robert LH (1979) Toxicol Lett 4:449–453CrossRef
    21.Kogoma M, Miki Y, Tanaka K, Takahashi K (2006) Plasma Process Polym 3:727–733CrossRef
    22.Ghormley JA, Stewart AC (1956) J Am Chem Soc 78:2934–2939CrossRef
    23.Palmer DA, Ramette RW, Mesmer RE (1984) J Sol Chem 13:673–683CrossRef
    24.Awtrey AD, Connic RE (1951) J Am Chem Soc 73:1842–1843CrossRef
    25.Manley TC (1943) Trans Electrochem Soc 84:83–96CrossRef
    26.Flores-Fuentes A, Peña-Eguiluz R, López-Callejas R, Mercado-Cabrera A, Valencia-Alvarado R, Barocio-Delgado S, de la Piedad-Beneitez A (2009) IEEE Trans Plasma Sci 37:128–134CrossRef
    27.Kogelschatz U, Eliasson B, Egli W (1997) J de Phys IV 7:C4/47–C4/66
    28.Dwivedi C, Toley MA, Dey GR, Das TN (2013) Ozone Sci Eng 35:134–145
    29.Humidity calculator, http://​www.​humidity-calculator.​com/​index.​php . Accessed 6 Jan 2015
    30.H2O2 decomposition. http://​en.​wikipedia.​org/​wiki/​Hydrogen_​peroxide . Accessed 6 Jan 2015
    31.Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Angew Chem Int Ed 45:6962–6984CrossRef
    32.Takechi K, Lieberman MA (2001) J Appl Phys 90:3205–3211CrossRef
    33.Kogelschatz U (2003) Plasma Chem Plasma Process 23:1–46CrossRef
    34.Eliasson B, Kogelschatz U (1988) Appl Phys B 46:299–303CrossRef
    35.Yoshinaga T, Akashi H (2013) J Phys: Conf Ser 441:012013
    36.Ghassemi M, Mohseni H, Niayesh K, Shayegani AA (2012) IEEE Trans Dielect Elect Insul 19:865–876CrossRef
    37.Baricholo P, Hlatywayo DJ, von Bergmann HM, Stehmann T, Rohwer E, Collier M (2011) S Afr J Sci 107:Art. #581:1-7
    38.Dielectric Barrier Discharge, Solved with COMSOL Multiphysics 4.4. https://​www.​comsol.​co.​in/​model/​download/​186245/​models.​plasma.​argon_​dbd_​1d.​pdf . Accessed 25 March 2015
  • 作者单位:G. R. Dey (1)
    Tomi Nath Das (1)

    1. Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics
    Characterization and Evaluation Materials
    Mechanical Engineering
    Inorganic Chemistry
    Nuclear Physics, Heavy Ions and Hadrons
  • 出版者:Springer Netherlands
  • ISSN:1572-8986
文摘
Controlled chemical transformation of water vapor in dielectric barrier discharge (DBD) of argon into hydrogen and hydrogen peroxide for its usability as in situ or ex situ H2 and H2O2 source are reported. Online analysis of the product gas mixture by conventional wet-chemical colorimetric method using buffered KI absorber solution revealed typical H2O2 G-value = 6.4 × 10−3 µmol J−1 (G-value defines as the number of molecules produced/consumed per 100 eV of energy; in SI unit G-value is expressed in µmol J−1) in the absence of ozone. On the other hand, H2 in product mixture analyzed in gas chromatograph-thermal conductivity detector (GC-TCD) with argon carrier revealed its G-value = 0.134 µmol J−1. Enhancements in products’ yields were explored by varying gas residence time inside the plasma zone, and applied voltage and frequency on the dielectric surfaces. Employing a double-DBD reactor, at applied high voltage ~2.5 kV mm−1 @50 Hz and gas residence time ~20 s resulted in the highest yields of H2O2. However, the H2 yield increased continuously with increase in gas residence time. On the other hand, the single-dielectric barrier surface reactors were more efficient for high and exclusive generation of ex situ H2 (e.g. maximum 1260 ppm; G-value typically 0.498 µmol J−1). Keywords Dielectric barrier discharge Argon Water vapor Hydrogen Hydrogen peroxide Free radical reactions Gas chromatograph

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700